ラーメン構造物の耐震・構造解析に関する基礎的研究

Fundamental study concerned with earthquake-proof and structural analysis of rigid frame structure

小林修一* 、 青木徹彦** Shuichi Kobayashi, Tetsuhiko Aoki

Abstract This study compares precision of Newmark β method, general solution of differential equation and Wilson's θ method, which are treating calculation of time history response analysis. This study compares also precision of direct numerical integration method and modal analysis. Then precision of Wilson's θ method is improved. Through the calculation of models of 2 layers rigid frames and shear building equalized from 2 layers rigid frames by Mutou's D-value method, the response characteristics are investigated.

1. はじめに

1995 年 1 月 17 日に発生した兵庫県南部地震によっ て、鉄道や道路の高架橋の鋼鉄製の多くの橋脚に局 所的な座屈破壊が生じた。旧耐震基準で設計された 構造物に被害が集中した原因には、弾性限以上の照 査が行われていなかったことなどが考えられている。

この問題に対処するため、土木学会は、1995年5 月23日に、耐震基準などに関する第1次提言で、2 段階設計法に加えて、大地震の可能性の高い地域の 構造物の耐震性はその重要度を考慮して決定すべき であるという考えを明らかにしている。つまり、人 命や社会的影響に応じてランク付けして、影響の大 きいものには耐震性を厳しくするという考え方であ る。

今後、巨大地震に対してこのような設計方法を採 用していくためには、構造物の機能を失わせずにあ る部分だけを破壊させる技術の開発と設計方法を考 えていく必要がある。

耐震設計を行う場合の解析方法には、静的解析と 動的解析がある。動的解析は、構造物の動的挙動が 煩雑になることから、従来の設計はほとんど静的解 析で行われてきた。この方法は、地震力と地動によ る慣性力がほぼ等しくなる場合、つまり、地震動の 主要部の固有周期が、構造物の主要部の固有周期に 比較してかなり長い場合に有効になる。それゆえ、 免震装置を加えた機能重視型の設計を行っていくた めには、静的解析だけでは不十分になってくる。な ぜなら、一般に、免震装置を持つ構造物は、従来的 に地震動の主要部の振動周期よりも構造物の主要部 の固有周期が大きくなり応答加速度が軽減されてい る。このような場合には、地震力をそのまま慣性力 と見なすことができなくなることが考えられる。こ の理由からも、今後、機能重視型の耐震・免震設計 を行っていく必要上、動的解析による設計は、重要 なものとなってくるだろう。

本研究では、ラーメン構造物の応答性状を把握す るためにモード解析や直接数値積分法を採用した振 動解析プログラムを作成して数値実験を試み、動的 解析に必要な構造特性に関して考察を行う。

2. 研究計画および研究方法

2·1 研究計画

^{*} 愛知工業大学大学院 学生(豊田市)

^{**} 愛知工業大学 土木工学科 (豊田市)

構造物の挙動を厳密に調べるために、平面骨組とこ れと等価なせん断建物の場合に分けて多自由度系に モデル化する。次に時間ステップ毎に求めていく時 刻歴応答によって計算する振動解析プログラムを作 成する。解析方法としては、固有モードの重ね合わ せによって解析するモード解析と固有値や固有ベク トルを使わない直接数値積分法を用いる。応答値を 算出する式には、使用実績のあるラプラス変換やニ ューマークβ法、ウィルソンθ法、一般解などによ る式を用いることにする。

2·2 研究方法

一般解やニューマークβ法、ウィルソンθ法、ラプ ラス変換などによる計算式を適用して、せん断建物 と平面骨組の応答値を求め、計算式の精度を比較す る。次に、構造物モデルの違いにより、モード解析 と直接数値積分法の精度の比較を行うと共に、構造 特性についての考察を行う。

3. 直接数值積分法

直接数値積分法は、構造物の弾塑性応答のように復 元力特性が応答履歴に応じて複雑に変化する場合で も微少区間ごとに動的特性の変化を考慮することに より順次解を求めていくことができるため、地震動 のような不規則な外乱を受ける構造物の動的応答を 解析するのに適している。

3.1 一般解

自由振動の解と強制振動の解(特解)を合わせた解 のことである。本研究では、弾性領域における構造 物の応答性状を把握するため、時間ステップΔtの範 囲において、変位に比例する外力を考えることにす る。

3·2 ニューマークβ法

ニューマークβ法は、第3次の項まで採用したテイ ラー展開式に基づく変位の基本式と、改良オイラー 法(台形公式)に基づく速度の基本式を持つ。応答 値を求める場合において、これらの未知数3つに対 して方程式が2つしかないため、しばしば、運動方 程式と連立させて解を収束させる方法が採られる。

変位の基本式が持つβの値には、1/6、1/4が用い られる。これらの値は、解の安定性の上で違いがあ る。

 $\beta = 1/4$ の時、運動系の最小固有周期よりも時間ス テップの方が多少大きくなる場合でも、常に解が安 定していることから、本研究では、 $\beta = 1/4$ の値を採 用した。

3·3 ウィルソンθ法

ウィルソン θ 法は線形加速度法の体質を強化したものである。線形加速度法とはニューマーク β 法の変位の基本式に含まれる β の値を1/6にする方法である。

計算の手続きは、線形加速度法とほとんど同じで あるが、線形加速度法では運動方程式を時刻 $t + \Delta t$ 秒 の時点で使って応答値を求めているのに対して、ウ ィルソン θ 法では、時刻 $t + \Delta t$ 秒における応答値の精 度を高めるためにそれより先の時刻 $t + \theta \cdot \Delta t$ 秒 ($\theta > 1$)に線形加速度法を適用して、 θ を含む 1 次式 で補間して応答値を求めているところに違いがある。

3·4 新ウィルソン∂法

この解法を使えば、ウィルソン θ 法よりもさらに精 度を高めることができる。ウィルソン θ 法との違い は、線形加速度法で使った時間ステップ Δt を利用す るか、しないかにある。ウィルソン θ 法では、線形 加速度法で使った時間ステップ Δt を利用して、まず、 任意時刻 $t+\theta$ · Δt 秒後の応答値を求めている。とこ ろが、地震加速度計は、この時刻の地震加速度を捕 らえていないのが普通である。そのため、ウィルソ ン θ 法では、地震加速度を1 次式で補間して、近似 された地震加速度を利用することになる。

精度を高める上で、できるならば、近似値や近似 式は使わない方が賢明である。ウィルソン θ 法は、 線形加速度法の体質を強化したものであるが、ウィ ルソン θ 法を利用する前の段階で、誤差を含んだ地 地震加速度を利用すれば、精度が若干低下すること は明らかである。特に地震加速度は非線形であるた め、1 次式で近似すれば、誤差が生じるのは避けら れない。そこで、新ウィルソン θ 法を提案すること にする。この方法では、地震加速度が確実に記録さ れている任意時刻を $t+\theta$ ムt 秒と見なす。このとき、 地震加速度計が記録した時間テップhは、 θ · Δt に相 当する。これらの関係から、新たな時間ステップ $\Delta t'$ を求め、ウィルソンの 1 次補間式で近似して任 意時刻 $t+\Delta t'$ 秒後の応答値を求める。この方法は、

- ① 地震加速度を1次式で近似していないこと。
- ② 時間ステップがさらに小さくなっていること。

より、ウィルソンθ法よりも若干精度がよくなって いることが期待される。しかし、この方法は、地震 加速度計が刻む時間ステップが大きくなると精度が 落ちる欠点がある。図 3.1 にウィルソンθ法と新ウ ィルソンθ法で求めらる応答値の関係を示す。

図 3.1 新ウィルソンθ法とウィルソンθ法の精度の比較

ただし、Δ*t* = θ ·Δ*t*'、Δ*t*' = $\frac{\Delta t}{\theta}$

3.5 地震による 1 層ラーメンの応答波形と最大 応答値

1940年に発生した El Centro 地震加速度を作用させることにする。記録された地震波形は、時間ステップが 0.01 秒のものを採用し、解析するための地震の継続時間は 6 秒間にした。また、この間に最大加速度 314 gal が生じるようにこの間に生じた最大加速度で任意時刻の加速度を除した地震加速度に、指定した最大加速度 314 gal を乗じて変換した地震波形を用いた。その地震加速度波形を図 3.2 に El Centro 地震に関する主な記録を表 3.1 に示す。

表 3.1 El Centro	地震の主な記録
-----------------	---------

And the second se	
発生場所	カリフォルニア
発生時期	1940年5月14日
発生方向	NS
最大加速度	314 (gal)
	$(gal) = (cm/s^2)$

(1) ニューマークβ法による応答値

図3.2の地震波形を入力して得られる図3.3に示す1 層ラーメンを図3.4のように1自由度系にモデル化 したの応答波形をに示す。ここでは、時刻歴応答解 析の計算式に、ニューマークβ法を適用して求めら れる最大応答値と応答波形を図3.5から図3.7に示 す。ただし、1層ラーメンの柱部の質量はなく、梁 部に質量が集中しているものとする。1自由度系モ デルの部材諸量は表3.2に示す。

(2) 他の計算式で得られた応答値との比較 計算式の違いにより求められた応答値を比較できる 表を次に示す。ただし、誤差は、ニューマークβ法に よる応答値を基準にする。

	ニューマークβ法	一般解	ウィルソン日法	新ウィルソン日法
時刻 (s)	3.4	3.4	4.51	3.397
最大変位(cm)	0.077	0.081	0.085	0.074
誤差 (%)		-5.2	-10.4	3.9
時刻 (s)	3.42	3.42	3.43	3.417
最大速度(ca/s)	6.106	6.097	5.966	5,963
誤差 (%)		-0.15	2.3	2.3
時刻 (s)	3.4	3.4	4.51	3.397
最大加速度 $(ca/s/s)$	690.2	728.8	653.1	624.6
誤差 (%)		-5.6	5.4	9.5

表 3.3 計算式の違いによる応答値の比較

(3) 計算式の違いによる最大応答値の比較に対す る考察

ニューマークβ法と一般解、ウィルソンθ法では、同 じ時間ステップで逐次、応答値を求めている。これら の方法が厳密解に近い値を得るための方法であるこ とより、どの場合も最大応答値にあたる時刻は、ほぼ 一致していなくてはならない。表 3.3 より最大応答値 が生じた時刻に注目すると、ウィルソンθ法の最大変 位応答値と最大加速度応答値の時刻が他の計算式で 得られた最大応答値の時刻に比べて 1 秒以上遅れて いることに気づく。これは、地震加速度を1次式で近 似したことが原因と考えられる。

一方、新ウィルソンθ法による応答値は、ニューマ ークβ法や一般解の計算で使った時間ステップより も、0.003 秒小さい時間ステップが刻む時刻での応答 値を求めてはいるものの、最大応答値の時刻がニュー マークβ法や一般解で出力された最大応答値の時刻 にかなり接近していることより、ウィルソンθ法に比 べて精度が上がっていることが明瞭であることが分 かる。

次に、ニューマークβ法と一般解の間の誤差の原因 について考察する。一般解では、運動系が線形である 場合を扱うため、強制振動による解において、変位が 外力に比例すると仮定している。つまり、変位を1次 式で近似していることになる。一方、ニューマークβ 法では、厳密解を部分積分して得られた解の第3次の 項まで採用した変位式を使っている。よって、誤差の 原因は、近似式の違いによるものであることが理解で きる。

4. 多自由度系構造物のモデル化

4.1 平面骨組・せん断建物のモデル化

4.1.1 平面骨組のモデル化

平面骨組モデルとその部材諸量を表 4.1 および図 4.1 に示す。同図中の丸で囲まれた番号は節点番号である。

節点数	部材数	自由度の固定成分 数	単位長質量 (tf ·s²/cm/cm)				
12	12	6	0.0000127				
	断面積 (cm²)	断面2次モーメント (cm¹)	弹性係数 (tf/cm²)				
梁	2500	520833	21000				
柱	2500	520833	2100				

表 4.1 部材諸量

4・1・2 せん断建物のモデル化

せん断建物とは建物の床位置で水平断面での回転が ないものをいう。このような変形を規定するために 次のような仮定を行う。

- ① 全ての質量は床位置に集中している。
- ② 床を支える梁は柱に比べて剛性が大である。
- ③ 柱に起こる付加軸力による伸縮を無視する。

このような仮定のもとでは多層階建物は水平にし か変位しないことになる。一般に曲げが卓越するこ とのないラーメンでは、せん断建物にモデル化して も近似できるとされている。せん断建物モデルを図 4.2 に示す。

ここで、図 4.1 に示した平面骨組を2自由度、4 自 由度、8自由度の等価なせん断建物にモデル化する。 平面骨組を高さ方向に 4 等分してそれらの区分を下 から第1層、第2層、第3層、第4層と名付けるこ とにする。等価変換した 2 自由度系モデルのみを図 4.3 に示す。せん断建物の柱剛性は、武藤の D 値法 で一致させた。2自由度系の部材諸量は表 4.2 に示す。

図 4.2 せん断建物モデル

図 4.3 2 自由度系モデル

表 4.2 2 自由度系の部材諸量

第2層			
質量 (tf ·s²/cm)	剛性 (tf/cm)	断面2次モーメント (cm⁴)	柱高 (cm)
0.02	179.5	890476	500
第4層			
質量 (tf · s²/cm)	剛性 (tf/cm)	断面2次モーメント (cm ⁴)	柱高 (cm)
0.02	169.4	840030	500

5. 多重度系構造物の振動解析

5.1 単元波

第4章 4・1でモデル化した構造物の応答性状を比較 する最初の段階として、一定の角振動数2(rad/s)を 持つ単元波

$$\ddot{y}_{g} = 196 \cdot \sin(2 \cdot t) \qquad \cdots (5.1)$$

を地動加速度として入力する。

以下に、式(5.1)の波形を描画する。

5・1・1 せん断建物と平面骨組の応答性状の比較 方法

モード解析と直接数値積分法で平面骨組とせん断建 物の応答値を求める。応答値を比較するに当たり、 モード解析では、一般解とニューマークβ法で計算 した応答値を使って、比較することにする。また、 直接数値積分法で使った計算式は、ニューマークβ 法による式である。

式の精度の違いより生じる誤差を考慮して、同じ 計算式で求められた平面骨組とせん断建物の応答値 を比較することにする。以下に、変位応答値と加速 度応答値を比較できる表を表 5.1.1 から表 5.1.6 に示 す。

(1) モード解析に一般解を適用した場合

表 5.1.1 最大変位応答値の比較

最大変位応答値(cm)	第1層目	第2層目	第3層目	第4層目	
①2自由度系せん断建物		0.044		0.067	
②平面骨組		0.081		0.132	
①を基準とした誤差(%)	1	-84.1		-97	
①4自由度系せん断建物	0.044	0.08	0.104	0.118	
②平面骨組	0.042	0.081	0.108	0.132	
①を基準とした誤差(%)	4.5	-1.3	-3.8	-11.9	1
①8自由度系せん断建物	0.083	0.147	0.189	0.209	
②平面骨組	0.042	0.081	0.108	0.132	
①を基準とした誤差(%)	49.4	44.9	42.9	36.8	
	1				

表 5.1.2 最大加速度応答値の比較

最大加速度応答值 (ca/s/s)	衛1層日	第2圖日	衛3層日	第4層月	
①2自由度系せん断律物		197.2		198.5	
②平面骨組		199.7		203.4	
①を基準とした誤差(%)		-1.3		-2.5	
①4自由度系せん断建物	197.9	199.6	200.8	201.6	
②平面骨組	194.5	199.7	206.9	203.4	
①を基準とした誤差(%)	1.7	-0.05	-3	-0.9	
①8自由度系せん断建物	196.8	199.5	201.2	202.3	
②平面骨組	194.5	199.7	206.9	203.4	
①を基準とした誤差(%)	1.2	-0.1	-2.8	-0.2	

(2) モード解析にニューマークβ法を適用した

場合

表 5.1.3 最大変位応答値の比較

最大変位応答值(cm)	第1層目	第2層目	第3層目	第4層目	
①2自由度系せん断建物		0.044		0.068	
②平面骨組		0.082		0.132	
①を基準とした誤差(%)		-86.4		-94.1	
①4自由度系せん断建物	0.044	0.08	0.104	0.118	
②平面骨組	0.04	0.082	0.108	0.132	
①を基準とした誤差(%)	9.1	-2.5	-3.8	-11.9	
①8自由度系せん断建物	0.083	0.147	0.189	0.21	
②平面骨組	0.04	0.082	0.108	0.132	
①を基準とした誤差(%)	51.8	44.2	42.9	37.1	

表 5.1.4	最大加速度応答値の	比戰
---------	-----------	----

最大加速度応答值(cm/s/s)	第1層目	第2層目	第3層目	第4層目	
①2自由度系せん断建物		197.8		199.4	
②平面骨組		200		202.9	
①を基準とした誤差(%)		-1.1		-1.8	
①4自由度系せん断建物	197.6	199.5	200.7	201.5	
②平面骨組	197.6	200	202	202.9	
①を基準とした誤差(%)	. 0	-0.3	-0.6	-0.7	
①8自由度系せん断建物	196.7	199.2	201.8	203.4	
②平面骨組	197.6	200	202	202.9	
①を基準とした誤差(%)	-0.5	-0.4	-0.1	0.2	

(3) 直接数値積分法による応答値の比較

最大変位応答值(cm)	第1層目	第2層目	第3層目	第4層目	
①2自由度系せん断建物		0.044		0.068	
②平面骨組		0.035		0.053	
①を基準とした誤差(%)		20.5		22.1	
①4自由度系せん断建物	0.045	0.081	0.104	0.119	
②平面骨組	0.017	0.035	0.045	0.053	
①を基準とした誤差(%)	62.2	56.8	56.7	55.5	
①8自由度系せん断建物	0.085	0.149	0.192	0.213	
②平面骨組	0.017	0.035	0.045	0.053	
①を基準とした誤差(%)	80	76.5	76.6	75.1	
					· · · · · · · · · · · · · · · · · · ·

表 5.1.5 最大変位応答値の比較

表 5.1.6 最大加速度応答値の比較

最大加速度応答值(cm/s/s)	第1層目	第2層目	第3層目	第4層目	
①2自由度系せん断建物		198.4		200.4	
②平面骨組		197.4		199.4	
①を基準とした誤差(%)		0.5		0.5	
①4自由度系せん断建物	198.6	200.3	201.6	202.5	
②平面骨組	196.6	197.4	198.4	199.4	
①を基準とした誤差(%)	1	1.4	1.6	1.5	
①8自由度系せん断建物	197.3	200.6	203	205.5	
②平面骨組	196.6	197.4	198.4	199.4	
①を基準とした誤差(%)	0.4	1.6	2.3	3	

5・1・2 せん断建物と平面骨組の応答性状の比較 に対する考察

モード解析で求めた応答値を比較すると、平面骨組 の応答性状は、2 自由度系と8 自由度系の応答性状 に比べて、4 自由度系の応答性状がよく合っている。 一方、直接数値積分法で求めた応答値を比較すると、 平面骨組の応答性状は、4 自由度系と8 自由度系の 応答性状に比べて、2 自由度系の応答性状に近似し ていることが分かる。一般に、曲げの影響が卓越す ることのないラーメンでは、せん断系に等価しても ラーメンの応答性状をよく近似させることができる とされている。このことを踏まえて考えれば、確か に、平面骨組がある自由度の時のせん断建物の応答 性状に近似させることが可能であることが理解でき る。ところで、問題は、モード解析と直接数値積分 法で、平面骨組の応答性状に近似するせん断建物の 自由度数が異なることである。この現象は、モード 解析の過程で行った一般化ヤコビ法による固有値解 析で生じた誤差の影響により生じたものと思われる。 このように考えれば、全ての運動方程式を連立させ て解く直接数値積分法で求めた応答値が実際の値に 近いことになる。よって、2層ラーメンの応答値は、 2 自由度系のせん断建物の応答値に近似することが 考えられる。

5.2 地震波を入力した場合の応答値の比較方法 地震波を入力した場合のせん断建物と平面骨組の最 大応答値の比較を行う。モード解析で求めた応答値 は、固有値解析による誤差が含まれているため、直 接数値積分法で求めた応答値で比較することにする。

地震加速度は、2 種弾性地盤用標準地震加速度と 第3章3・5の図3.2に示した El Centro 地震加速度 を用いる。いずれの地震加速度も、最大加速度を196 gal に変換する。以下に、2種弾性地盤用標準地震加 速度波形を描画する。

次に、最大変位応答値と最大加速度応答値をそれ ぞれ比較できる表を示す。

(1) 2種弾性地盤用標準地震波を入力した場合

①2自由度系せん断建物 0.107 0.173 ②平面骨組 0.119 0.187	
②平面骨組 0.119 0.187	
①を基準とした誤差(%) -11.2 -8.1	
①4自由度系せん断建物 0.109 0.203 0.271 0.313	
②平面骨組 0.057 0.119 0.156 0.187	
①を基準とした誤差(%) 47.7 41.4 42.4 40.3	
①8自由度系せん断建物 0.159 0.293 0.385 0.435	
②平面骨組 0.057 0.119 0.156 0.187	
②を基準とした誤差(%) 64.2 59.4 59.5 57	

表 5.2.1 最大変位応答値の比較

	表も	5.2.2	最大加速度応答値の比較
--	----	-------	-------------

最大加速度応答值(cm/s/s)	第1層目	第2層目	第3層目	第4層目	
①2自由度系せん斷建物		394.9		564.5	
②平面骨組		566.2		822.7	
①を基準とした誤差(%)		-43.4		-45.7	
①4自由度系せん斷建物	332.7	457	540.1	595.7	
②平面骨組	406.8	566.2	709	822.7	
①を基準とした誤差(%)	-22.3	-23.9	-31.3	-38.1	
①8自由度系せん断建物	264.1	382.4	443.3	515.2	
②平面骨組	406.8	566.2	709	822.7	
①を基準とした誤差(%)	-54	-48.1	-59.9	-59.7	
	:				

(2) El Centro 地震波を入力した場合

恚	522	- 最大	:密位	応答	値の	十一款
25	0.4.0	1412		MUN Er	IIIE V	LUFIL

最大変位応答値(cm)	第1層目	第2層目	第3層目	第4層目	
①2自由度系せん断建物		0.112		0.19	
②平面骨組		0.102		0.157	
①を基準とした誤差(%)		-11.2		-8.1	
①4自由度系せん断建物	0.132	0.249	0.336	0.39	
②平面骨組	0.049	0.102	0.132	0.157	
①を基準とした誤差(%)	47.7	41.4	42.4	40.3	
①8自由度系せん断建物	0.244	0.458	0.611	0.688	
②平面骨組	0.049	0.102	0.132	0.157	
①を基準とした誤差(%)	64.2	59.4	59.5	57	

表 5.2.4 最大加速度応答値の比較

······					
最大加速度応答值(cm/s/s)	第1層目	第2層目	第3層目	第4層目	
①2自由度系せん断建物		420		658	
@平面骨組		554.5		734	
①を基準とした誤差(%)		-32		-11.6	
①4自由度系せん断建物	406	529	702	807	
②平面骨組	314.9	554.5	630.5	734	
①を基準とした誤差(%)	22.4	-4.8	10.1	9	
①8自由度系せん断建物	387	590	765	799	
②平面骨組	314.9	554.5	630.5	734	
①を基準とした誤差(%)	18.6	6	17.6	8.1	

5・2・1 せん断建物と平面骨組の応答性状の比較 に対する考察

2 種弾性地盤用標準地震波を入力した場合、変位の 最大応答値では、平面骨組の最大応答値が4自由度 系と8自由度系の最大応答値に比べて、2自由度系 の最大応答値によく近似している。加速度の最大応 答値では、平面骨組の最大応答値が2自由度系と8 自由度系の最大応答値に比べて4自由度系の最大応 答値に近似しているかのように見える。しかし、4 自由度系では、変位の最大応答値の誤差が大きいた め、4自由度系が平面骨組の応答性状によく近似す るとは断言できない。

El Centro 地震波を入力した場合、変位の最大応 答値において、4 自由度系と8 自由度系の最大応答 値に比べて2 自由度系の最大応答値によく近似して いる。しかし、加速度の最大応答値は2 自由度系の 最大応答値によく近似しているとは言えない。

単元波を入力した場合の結果と地震波を入力した 場合の結果を考慮すると、明らかなことは、2 自由 度系の変位の応答性状を平面骨組の変位の応答性状 によく近似させることができるということである。 地震波を入力した場合、加速度の応答性状をある特 定の自由度系に近似させることができない理由には、 武藤のD値法で、せん断建物の柱剛性を近似したと きに生じた誤差の影響と固有振動数が一定でない地

6. 武藤のD法と著者のD値法の精度の比較

第5章5·1·2の考察より、単元波を入力した場合に は、平面骨組の応答性状は、2自由度系せん断建物 の応答性状によく近似することが明らかになった。 また、第5章5·2·1の考察より、地震波を入力した 場合には、平面骨組の応答性状は、2自由度系の変 位の応答性状とよく近似するが、加速度の応答性状 では、誤差が大きくなることが明らかになった。こ れらの事実から地震波を入力すると、平面骨組とせ ん断建物の応答値の間の誤差が大きくなる傾向にあ ることが分かる。そこで、この誤差を減少させるた めに、平面骨組の剛性をせん断建物の剛性に変換す る精度のよい方法を考えることにする。

武藤のD値法は、ラーメン構造物において、曲げ の影響が卓越しない場合によく用いられる方法であ る。本研究では、曲げの影響が多少生じても平面骨 組の応答性状をせん断建物の応答性状に近似させる ことができる方法を考案する。これは、武藤のD値 法で求めた剛性の 1.3 倍にした剛性を用いて最大応 答値を近似させる方法である。

武藤のD値法に比べて著者のD値法の精度が良く なっていることを示すために、まず、梁の剛性を柱 の剛性の1倍、2倍、3倍、5倍、10倍の時に場合 分けして、武藤のD値法によるせん断建物の応答値 と著者のD値法によるせん断建物の応答値、そして、 平面骨組の応答値をそれぞれ求める。解析に使用し た地震波は、2種弾性地盤用標準地震波と El Centro 地震波である。どの地震波も最大加速度が 196 gal になるように変換してある。

平面骨組の最大応答値と武藤のD値法と著者のD 値法によるせん断建物の最大応答値の間の誤差をそ れぞれ比較できる表を表 6.1.1から表 6.2.4 に示す。 ただし、第2層目と第4層目の最大変位応答値と最 大加速度応答値のみを示す。

6・1 2種弾性地盤用標準地震波を入力した場合

表 6.1.1 第 2 /	曾日の1	最大发	位応答	値の比	靫
第2周目					
最大変位応答值 (cm)	1倍	2倍	3倍	5倍	10倍
①平面骨組の応答値	0.118	0.1	0.078	0.105	0.119
2武藤のD値法による応答値	0.257	0.156	0.112	0.079	0.107
①を基準にした誤差(%)	-117.8	-56	-43.6	24.8	10.1
③著者の順法による応答値	0.175	0.092	0.081	0.075	0.114
①を基準にした誤差 (%)	-48.3	8	-3.8	28.6	4.2
②、③の応答値は、せん断連	物の応答値	である。			

表 6.1.2 第4層目の最大変位応答値の比較

:第4層目					
最大変位応答值 (cm)	1倍	2倍	3倍	5倍	10倍
①平面骨組の応答値	0,228	0.176	0,133	0.171	0.187
②武藤のD値法による応答値	0.511	0.276	0.194	0.131	0.173
①を基準にした誤差(%)	-124.1	-56.8	-45.9	23.4	7.5
③著者のD値法による応答値	0.347	0.164	0.139	0.123	0.185
①を基準にした誤差 (%)	-52.2	6.8	-4.5	28.1	1.1
[
②、③の応答値は、せん断連	物の応答値	である。			

表 6.1.3 第 2 層目の最大加速度応答値の比較

:第2層目					
最大加速度応答值(cm/s/s)	1倍	2倍	3倍	5倍	10倍
①平面骨組の応答値	357	370	326	472	575
②武藤のD値法による応答値	483	390	309	264	395
①を基準にした誤差 (%)	-35.3	-5.4	5.2	44.1	31.3
③著者のD値法による応答値	435	289	297	330	541
①を基準にした誤差 (%)	-21.8	21.9	8.9	30	5.9
②、③の応答値は、せん断建	物の応答値	である。			

表 6.1.4 第 4 層目の最大加速度応答値の比較

1倍	2倍	3倍	5倍	10倍
578	563	467	689	823
	573	478	368	565
-35.5	-1,8	-2,4	46.6	31.3
692	446	442	446	789
-19.7	20.8	5.4	35.3	4.1
物の応答値	である。			
	1倍 578 783 35.5 692 19.7	1倍 2倍 578 563 783 573 - 35.5 - 1.8 692 446 - 19.7 20.8 物の応答値である。	1倍、2倍、3倍 578、563、467 783、573、478 -35.5、-1.8、-2.4 652、446 442 -19.7、20.8、5.4 MOD応答値である。	1倍 2倍 3倍 5倍 578 563 467 689 783 573 478 368 -35.5 -1.8 -2.4 46.6 692 446 442 446 -19.7 20.8 5.4 35.3

6·2 El Centro 地震波を入力した場合

夜 0.4.1 97 4 准	日の風	2八叉1	1/wan		ا یک
第2層月					
最大変位応答値 (cm)	1倍	2倍	3倍	5倍	10倍
①平面骨組の応答値	0,195	0.115	0.095	0.134	0.102
②武藤のD値法による応答値	0.204	0.253	0,228	0.131	0.112
①を基準にした誤差 (%)	-4.6	-120	-140		-9,8
action of the second second					
③ 著者のD値法による応答値	0.217	0.129	0.127	0.095	0.108
①を基準にした誤差(%)	-11.3	-12.2	-33.7		-5.9
② ③の広答値は、せん断建	物の応答値	である。			
495					

表 6.2.1 第 2 層目の最大変位応答値の比較

表 6.2.2 第 4 層目の最大変位応答値の比較

第4層目					
最大変位応答值(cm)	1倍	2倍	3倍	5倍	10倍
①平面貴組の応答値	0,378	0.21	0.161	0.222	0.157
②武藤の功道法による応答値	0,403	0.457	0.392	0,214	0.19
①を基準にした誤差(%)	-6.6	-117.6	-143.5	3.6	-21
③著者のD値法による応答値	0.415	0.233	0.222	0.161	0.176
①を基準にした誤差 (%)	-9.8	-11	-37.9	27.5	1.1
②、③の応答値は、せん版建	物の応答値	である。			

表 6.2.3 第 2 層目の最大加速度応答値の比較

鐵層目					
最大加速度応答值(cm/s/s)	1倍	2倍	3倍	5倍	10倍
①平面骨組の応答値	554	425	423	612	555
②武藤のり値法による応答値		609	669		
:①を基準にした誤差 (%)	19.1	-43.3	-58.2	26.3	24.3
③著者のD値法による応答値	595	397	491	367	514
①を基準にした誤差(%)	-7.4	6.6	-16.1	40	7.4
2、3の応答値は、せん物理	物の応答値	である。			

表 6.2.4 第4 層目の最大加速度応答値の比較

第47月					
最大加速度応答值(cm/s/s)	1倍	2倍	3倍	5倍	10倍
·①平面骨組の応答値	983	723	617	915	734
②武藤のD値法による応答値	625	971	976	587	658
:①を基準にした誤差(%)	36.4	-34.3	-58.2	35.8	10.4
③著者のD値法による応答値	794	643	730	617	749
①を基準にした誤差 (%)	19.2	11.1	-18.3	32.6	-2
2.3の応答値よ、せん物理	物の応答症	である。			

6・3 武藤のD値法と著者のD値法の精度の比較に 対する考察

表 6.1.1 から表 6.2.4 に示した誤差を見ると、著者の D 値法で求めた応答値と平面骨組の応答値の間の誤 差は、最大で52.2%であるのに対して、武藤のD値 法で求めた応答値と平面骨組の応答値の間の誤差は、 最大で143.5%に達している。武藤のD値法で求め た応答値は、梁と柱の剛性の比率が小さくなると平 面骨組との間の誤差がかなり大きくなる傾向にある。 この現象は、構造物に曲げの影響が生じてくるとせ ん断建物の応答値を平面骨組の応答値に近似させる 事が困難になることを示している。一方、著者の D 値法では、梁と柱の剛性が等しい場合でも平面骨組 との間の誤差が最大で、52.2%である。このことは、 武藤の D 値法に比べて著者の D 値法は、曲げの影響 が生じても平面骨組の応答値に割合よく近似するこ とを示している。よって、著者の D 値法は、武藤の D 値法に比べて精度が上がっているといえる。

(1) 一般化ヤコビ法の精度には、限界があること。 自由度数が大きくなるにつれて固有モードが正確に 求められなくなる欠点がある。よって、固有値解析 の精度によってモード解析の精度が決まってくる。
(2)武藤のD値法で、曲げが卓越する平面骨組の梁剛 性と柱剛性をせん断建物の柱剛性に近似させて応答 値を求めると、平面骨組とせん断建物の応答値の間 の誤差が大きくなる。

(3)平面骨組部材の曲げが卓越しない場合、武藤のD 値法で得られた柱剛性を 1.3 倍にするとせん断建物 の応答値と平面骨組の応答値の間の誤差が約 50%以 上減少する。

(4)時刻歴応答計算をモード解析と直接数値積分法 で行うと、計算に掛かる時間は、直接数値積分法の 方が、モード解析に対して約3倍になる。

(5)2 層ラーメンの応答性状は、2 自由度系せん断建 物の応答性状とよく近似する。

(6)直接数値積分法による計算式は、入力加速度が不 規則振動するとその精度が低下する。

8. おわりに

本研究は、第1著者の修士論文の第2章と第3章を 中心にまとめたものである。研究過程にあたり、名 古屋大学の田辺忠顕教授の助言を頂いた。ここに深 く感謝の意を表する。

参考文献

 青木徹彦: 第44回応用力学連合講演会、機能 損失に基礎をおいた鋼構造物設計法の概念、日本学 術会議力学研究連絡委員会、1994年

 清水信行: パソコンによる振動解析、共立出版 株式会社、1989年、p.226-297

3) 戸川隼人: 有限要素法による振動解析、サイエ ンス社、1976 年 、p. 1-120

4) 中井博: 土木構造物の振動解析、森北出版株式 会社、1994 年、p.145-172

5) Mario Paz、木村欽一 訳: パソコンで解く振動 解析、丸善株式会社、1989 年、p. 1-36、 p. 125-162、 p. 203-274

6) 柴田明徳: 最新建築学シリーズ9 最新耐震構
 造解析、森北出版株式会社、1994年、P.1-112

7. まとめ

(受理 平成8年3月19日)