制振壁	鋼管	管ねじり
せん断降伏耐力	載荷実験	繰返載荷

1. はじめに

円形鋼管に繰返し捩りモーメントを加えた場合,鋼管全 断面がせん断塑性変形をすることによって, 安定的にエネ ルギー吸収されることが知られている 1)。また円形鋼管は シェル状になっているため、平板にせん断力を与える場合 に比べ、大きなひずみに対しても座屈を生じにくいという 利点も有しており,これらの特性を活かしたダンパーの提 案が行われている。既往の研究では、鋼管ねじりダンパー の安定的なエネルギー吸収能力を活かした上で、図1のよ うな新しい形の格子型制振壁システムの提案を行っている。 提案している制振壁の特長は、鋼管の管径・個数及び水平 材の部材長等により壁の剛性及び降伏耐力を任意に設定で きること、開口位置を任意に設定できることが挙げられる。 本報に先立ち、文献1)では、載荷実験を通して円形鋼管 単体の塑性域下での履歴挙動の安定性及び終局状態の把握 を行い、径厚比、径長比によらず、紡錘形の安定した履歴 挙動を示すことが確認された。

本報では、格子型制振壁システムに複数個の円形鋼管を 配置したときに安定した履歴挙動を示すことを載荷実験に より検証することを目的とする。

2. せん断実験概要

図2に試験体概要を各種寸法とともに示す。試験体は、 治具となる上下のCT鋼(CT-250×300×16×22)と左右の 平鋼(PL-28)(図1では補強材)、の中に水平材及び鉛直材 (以降、格子部材)を各3本ずつ格子状に配置して、水平 鉛直材の交差部に本制振壁システムのエネルギー吸収材と なる円形鋼管を計9個挿入している。水平材及び鉛直材の 断面形状は、PL-16として等質材料である。格子部材の間 隔は、各円形鋼管にねじりモーメントが均等に加わるよう に設定をしている。円形鋼管はφ-48.2×3.2、鋼種STK400 であり、鋼管長さは製作の都合上、格子部材の板厚2枚分 として、交差部に埋め込まれており、鋼管の外側への変形 を拘束している状況となっている。

円形鋼管と格子材との接合詳細は、図3に示すように水 平材及び鉛直材の2枚を貫通させ、隅肉溶接接合されてい る。格子材と治具となる部材との接合詳細は、図3に示す ように、ピン部回転軸となる丸鋼棒を両側がからナットで 締め付けるピン接合としており、ピン接合部に極力摩擦が 発生しないよう、格子材及び各治具の板厚分の合計長を有 する円筒状のピン孔部にシリンダーを挿入して、治具と格

正会員	○桐部	晃拓*1	同	鈴木	敏志*4
同	薩川	恵一*2	同	金子	洋文*5
同	鈴木	琢也*3			

格子型制振壁システムの せん断剛性及びせん断降伏耐力の算出式 鋼管のねじり剛性 鋼管の降伏ねじりモーメント $K_{\theta} = \frac{\pi G D^{3} t_{c}}{4h}$ $M_{yt} = 2\pi \left(\frac{D}{2}\right)^{2} \times t_{c} \times \frac{\sigma_{y}}{\sqrt{3}}$ D (鋼管直径), t_{c} (鋼管板厚),h (鋼管高さ) σ_{y} (降伏応力度),G (せん断弾性係数) 壁のせん断剛性 壁のせん断降伏耐力

Akihiro KIRIBE*¹, Keiichi SATSUKAWA*², Takuya SUZUKI*⁴, Satoshi SUZUKI*³, Hirofumi KANEKO*⁵

子材が板厚方向に締めつけないようにしている。

表1に本報で使用した鋼材の機械的性質を示す。円形鋼 管の降伏応力度は、0.2%オフセット法で算出している。

試験体及び加力治具の設置状況を図4に示す。反力床に 図4で示す試験体の下側のCT鋼をボルト接合し、門型フ レームに設置されたアクチュエータにより、水平力を作用 させ、試験体にせん断力を加える。なお試験体に面外変形 は、治具で拘束している。

載荷プログラムを図 5 に示す.載荷は本制振壁システム のせん断変形角γ が 1/100, 1/50, 1/30, 1/20 となる上下変 位δ の範囲で各振幅 2 回、計8回繰り返す。その後初期 載荷方向に単調載荷を行い,終局状況を確認する。ただし 1/20の負側1回目は、1/15まで変形させている。

荷重の計測は、試験体に作用するせん断荷重:Qは水平 アクチュエータの先端に設置したロードセルにより計測す る。またせん断変形角の計測は、治具となる CT 鋼と補強 材の交差部に位置するピン接合部近傍に計測治具となるネ ジ棒を補強材に添接して計測点(計4点)として、上側 2 点の平均値と下側 2 点の平均値の差分を元の長さの平均値 で除することにより算出している。

3. せん断実験結果

図6に載荷実験結果を示す。紡錘系の安定した履歴挙動 を示しており、せん断変形角が大きくなるに従い、耐力は 上昇している。またせん断耐力は数理的な算出式から求め た値とほぼ一致しているが、せん断剛性は算出式よりも低 い値となった。また8回目以降に行った単調載荷では、せ ん断変形角1/10まで載荷したが、せん断耐力を維持してい た。

写真1にせん断変形角1/10時の変形状態を示す。目視の 範囲内ではあるが、"格子"がほぼ同じ形状をしているこ とから、複数個配置した円形鋼管において、ほぼ同等の変 形をしていることが想定される。また円形鋼管も座屈変形 はされなかった。

4. まとめ

既往の研究で提案された鋼管ねじりダンパーの安定的な エネルギー吸収能力を活かした格子型制振壁システムにつ いて、本制振壁システムに複数個の円形鋼管を配置したと きの履歴挙動について載荷実験を行った。その結果、せん 断変形角1/20まで紡錘系の安定した履歴挙動を示すことが 確認できた。今後は本実験での円形鋼管の塑性ねじり状態 などを分析していく。

参考文献

(1) 仁野陽日,金子洋文,鈴木琢也,山崎賢二:格子型制振壁システムに用いる鋼管振りダンパーの基本的力学性能に関する実験的研究,日本建築学会構造系論文集,第81巻,第727号,pp1531-1539,2016.9

*1 愛知工業大学 元学生

- *2 愛知工業大学 教授
- *3(株)竹中工務店 竹中技術研究所
- *4 愛知工業大学 講師

表1 鋼材の機械的性質

図4 試験体設置状況

写真1 せん断変形角 1/10

*1 Aichi Institute of Technology

- *2 Professor, Aichi Institute of Technology
- *3Research & Development Institute, Takenaka Corporation
- *4 Lecture, Aichi Institute of Technology
- *5Professor, Shinshu University

^{*5} 信州大学 教授