Study on accuracy improvement of self-coupling sensor using terminal voltage change

吉松 剛⁺, 五島 敬史郎⁺⁺, 津田 紀生⁺⁺, 山田 諄⁺⁺ Takeshi Yoshimatsu, Keishiro Goshima, Norio Tsuda, Jun Yamada

Abstract Using semiconductor laser, a development of compact sensor which can be measured distance, shape, displacement and speed has been done. Self-coupling sensor is a compact and inexpensive sensor using interference between output light and the scattered light from the target. A measurement method which can detect self-coupling effect from change in terminal voltage of semiconductor laser without photodiode is proposed. The sensor can be more compact by detecting self-coupling effect with this method. The optimum condition of self-coupling sensor using terminal voltage change is studied.

1. はじめに

半導体レーザ(以下、LD)を用いた、距離、形状、移動 速度などが測定できる小型で安価なセンサの開発を目的 とした応用研究がされている。レーザ光を用いた距離測 定には、三角測量法による距離測定や、マイケルソン干 渉計を用いて LD の周波数変調により生じるビートを測 定し距離を測定する方法などが実用化されている。しか し、三角測量法は測定対象となる距離が制限され、マイ ケルソン干渉計は光学系が複雑になる欠点がある。また、 Im 程度の距離において小型で精度のよい距離計がない。

LD はターゲットからの散乱光の一部が活性層に入る とレーザ光出力が揺らぐ。ここで、ターゲットまでの距 離がレーザ発振波長の 1/2 の整数倍と等しいという条件 を満たすとき、最も光出力を強めようとする。この現象 は戻り光ノイズと呼ばれるが、本研究ではこれを自己結 合効果として利用する。自己結合型距離センサは、ター ゲットからの散乱光との干渉を利用するため、粗面に対 する測定が可能である。自己結合効果は距離計測⁽¹⁾⁽²⁾の ほかに、微小振動計測⁽³⁾⁽⁴⁾⁽⁵⁾、速度計測⁽⁶⁾⁽⁷⁾など様々な物 理量計測への応用が検討され、研究の報告がされている。 自己結合効果を応用した研究では、ファブリ・ペロー

* 愛知工業大学 大学院 工学研究科(豊田市)
* * 愛知工業大学 工学部 電気学科(豊田市)

(以下、FP)型 LD でレーザ光を照射し、LD の後方に搭載 されたフォトダイオード(以下、PD)から得られる光電流 より、自己結合信号を検出してきた。しかし、FP 型 LD は共振器長が長いためモードホップが発生しやすく、自 己結合信号が多数発生し、測定精度を大きく下げてしま う欠点がある。そこで、垂直共振器面発光レーザ(以下、 VCSEL)を用いた自己結合効果の研究が行われた⁽⁶⁾。FP 型 LD の共振器長が数百 µ m であるのに対し、VCSEL の 共振器長は数百Å程度と短いため、モードホップの発生 を抑え、単一モードで発振できる。しかし、VCSEL は LD 内における光損失を抑え、低い閾値電流で駆動でき るよう、反射率 99%以上の多層膜反射鏡を使用している ため、VCSEL の全反射側に PD を搭載しても、信号を観 測できない。

自己結合効果が発生すると VCSEL の発振波長が変化 する事⁽⁸⁾や、端子間電圧が変化する事⁽⁹⁾が報告されてい る。この端子間電圧の変化分を自己結合信号として測定 すれば距離測定ができる。これにより、PD を搭載して いない VCSEL でも自己結合効果を利用した距離測定が できる。また、PD を使用しないので、より小型で安価 な距離センサとして利用できる。将来的にはセンサを 2 次元アレイ状に、より密に配置することで、高精度な変 位、速度、形状測定センサとして用いることができる。

LD は注入電流を変調することで発振波長を変調できる。また、注入電流と発振波長は同じ縦モードにおいて、 ほぼ比例関係にある。この性質を利用して VCSEL の注 入電流を一定割合で変化させると、先述した条件を一定 周期で満たし、自己結合信号が発生する。このとき、自 己結合信号1つ分の時間で光が往復する長さが距離分解 能となる。変調電流の振幅値を大きくすると、条件を満 たす回数が多くなる為、距離分解能が良くなる。しかし、 注入電流に対する発振波長変化の線形性が悪くなるので、 誤差が大きくなる。振幅値を小さくすると注入電流に対 する発振波長変化の線形性は良くなるが、条件を満たす 回数が少なくなるため分解能が悪くなり、誤差が大きく なる。これは、最適な電流振幅値でLDを駆動すること が精度の良い測定に必要であることを示す。また、自己 結合信号を検出する受信回路の周波数特性に最適な変調 周波数にすることも必要である。

本論文では自己結合型センサの精度向上を目的として、 最適な電流振幅値と変調周波数を求める研究を行ったの で、その結果を報告する。

2. 測定原理

自己結合効果によって VCSEL の端子間電圧が変化す る原理について説明する。Fig.1 に VCSEL 複合共振器モ デルを示す。図中の振動波形は入射波と反射波が干渉し て発生した定在波である。散乱光の一部が戻り光として VCSEL の活性層に入ると、共振器内のレーザ光と結合し、 光出力強度が揺らぐ。このとき、VCSEL の発振波長を λ、 VCSEL の出力ミラーからターゲットまでの距離を L と して、

$$L = \frac{\lambda}{2}$$
n (n:整数) ·····(1)

の共振条件を満たすと、レーザの光出力は最大まで増加 する。VCSELの共振器内での増幅作用により、実際の戻 り光以上の光出力の変動が生じるため、極めて僅かな戻 り光量であってもこの現象は生じる。これを自己結合効 果と呼び、利用する。

VCSEL は印加電圧を変調すると注入電流が変調され るため、外部変調器を用いることなく VCSEL の発振波 長を変調できる。また、印加電圧と発振波長は同じ縦モ

Fig.1 Complex resonator model.

ードにおいて、ほぼ比例関係にある。よって、ある距離 Lにおいて、VCSELの印加電圧を一定の割合で変化させ た場合、一定周期で共振条件を満たし光出力が増減する。 Fig.2 は VCSEL に三角波変調をかけたときの端子間電圧 波形である。VCSEL に三角波変調かけた場合、VCSEL の端子間電圧波形は図中の点線のようになる。自己結合 効果が発生すると VCSELの端子間電圧は僅かに変動し、 一定周期の階段状になる。それが図中の実線部分となる。 この波形をモードホップパルス(以下、MHP)と呼ぶ。

印加電圧の変化に対する発振波長の変化が比例的で あるとした場合、共振条件を満たす隣り合った端子間電 圧の発振波長の差Δλは式(2)となる。

$$\Delta \lambda = \lambda_n - \lambda_{n+1} = \frac{2L}{n(n+1)} \cdots \cdots (2)$$

ここで、n は定在波の数である。L は *l* に比べて十分大 きいことから、n は 1 より十分大きいので式(2)を

$$\Delta \lambda = \frac{2L}{n^2} \cdots \cdots \cdots \cdots \cdots (3)$$

と近似できる。VCSELは印加電圧を変調すると注入電流 が変調される。また、印加電圧と発振波長は同じ縦モー ドにおいて、ほぼ比例関係にある。よって、変調効率は

$$\frac{d\lambda}{dV} = \frac{\Delta\lambda}{\Delta V} \cdots \cdots \cdots \cdots \cdots (4)$$

とすることができる。式(3)を式(4)に代入して

となる。共振回数Nは、MHP周波数をF、印加電圧振幅 値を*V*m、変調周期を*t*mとすると

Fig.2 Voltage waveform modulated with triangular wave.

$$N = \frac{v_{\rm m}}{\Delta v} = \frac{t_{\rm m}}{2} F \cdots \cdots \cdots \cdots (6)$$

が得られる。従って、式(5)から ΔV を式(6)に代入すると、 共振回数 N は

$$N = \frac{n^2}{2L} \frac{d\lambda}{dV} V_{\rm m} \cdots \cdots \cdots \cdots (7)$$

式(6)をFについてまとめると

$$F = \frac{V_{\rm m}}{\Delta V} \frac{2}{t_{\rm m}} \cdots \cdots \cdots \cdots \cdots (8)$$

ここで変調周波数 $f_{\rm m}$ は $f_{\rm m} = \frac{1}{t_{\rm m}}$ より

$$F = \frac{V_{\rm m}}{\Delta V} \frac{2}{t_{\rm m}} = f_{\rm m} V_{\rm m} \frac{n^2}{L} \frac{d\lambda}{dV} \cdots \cdots (9)$$

電圧振値 V_m に対する電流振幅値 I_m および電流に対する 変調効率 d λ /dI を用いると、n = $\frac{2L}{\lambda}$ より、MHP 周波数 F は以下のようになる。

$$F = 4f_{\rm m}I_{\rm m}\frac{L}{\lambda^2}\frac{d\lambda}{dI}\cdots\cdots\cdots(10)$$

よって、MHP 周波数は距離に対して比例的に変化する。 これを利用して距離測定を行うことができる。このとき、 MHP の 1 つ分の時間で光が往復する長さが距離分解能 となる。最大測定可能距離は使用する VCSEL のコヒー レント長によって制限される。

3. VCSEL の発振波長特性

本研究で使用した VCSEL は ULM850 である。円偏光 で、単一モード発振している。先述したように、注入電 流の振幅値は自己結合型センサの測定精度に影響する。 そのため、使用する VCSEL の発振波長特性をもとに注 入電流値を設計しなければならない。Fig.3 は周囲温度 25℃における ULM850 の波長特性である。850nm 帯で最 高分解能 3pm の ADVANTEST 社製光スペクトラムアナ ライザである Q8347 を使用して測定した。Fig.3 より、 ULM850 はサイドモードがピーク波長に対して約 1/8 以 下の大きさとなっており、単色性が良いことがわかる。 Fig.4 は注入電流に対する発振波長の変化を示す。Fig.4 より、発振波長は注入電流に対してほぼ比例的に変化し

ていることがわかる。注入電流の振幅値が大きいと定在 波の数が増え、共振条件を満たす回数が多くなるため、 分解能は良くなる。しかし、注入電流に対する波長変化 の線形性が悪くなるため、誤差が大きくなる。注入電流 の振幅値を小さくすれば注入電流に対する波長変化の線 形性は良くなるが、共振条件を満たす回数が少なくなる ため分解能が悪くなり、誤差が大きくなる。つまり、電 流振幅値の大きさによっては誤差が大きくなるので、精 度のよい測定をするためには最適な電流振幅値で駆動さ せなければならない。また、LD の周囲温度が変化して も注入電流に対する発振波長の傾きの変化が小さくなけ ればならない。ULM850 では、中心電流を約 5.35mA と して三角波変調すれば、周囲温度が変化しても MHP 周 波数の変化を抑えることができる。5.35mAを基準とした ときの変調効率は 0.418nm/mA である。精度の良い測定 に適した注入電流振幅値を決定するためには、いくつか の電流振幅値で実際に距離測定を行う。振幅値を徐々に 大きくすると誤差が小さくなっていき、ある程度の大き くすると誤差が増加するような V 字の曲線を描くので、 最も平均誤差の低かったものを最適な電流値とする。

Fig.3 Wavelength characteristic of ULM850.

Fig.4 Wavelength vs. injection current of ULM850.

4. 距離測定システムおよび方法

本研究で製作した距離測定システムを Fig.5 に示す。 センサ部はシグマ光機社製の直径 20.0 mm、焦点距離 21.2 mm の集光レンズと ULM850、これらを収めるシリ ンダーからなる。レーザ光はシリンダーの長さを調節す ることで、平行ビームだけでなくターゲットへレーザ光 を集光できるようにしている。この調整は測定内容に応 じて行う。ターゲットには反射シートを使用した。

VCSEL 駆動回路はファンクションジェネレータ(図中、 FG)で三角波電圧を印加すると、5.35mA を基準値とした 三角波電流を出力する。また、受信回路によって端子間 電圧の変化分を取り出し、その信号周波数を MHP 周波 数として距離測定を行う。MHP 周波数はオシロスコープ の FFT 解析によって測定する。端子間電圧の変化分は約 0.1 mV 程度と小さい。また、VCSEL の端子間電圧は変 調波信号成分、直流成分、MHP 信号成分からなるので、 機器ノイズとともに MHP 信号以外の信号成分を除去し て、MHP 信号のみを大きく増幅しなければならない。よ って受信回路は、増幅作用を有したハイパスフィルタお よびローパスフィルタによって構成している。ハイパス フィルタおよびローパスフィルタのカットオフ周波数は、 それぞれ 200 kHz と 6.5 MHz としている。

Fig.5 Measurement system.

5. 測定結果

5・1 電流振幅値に対する平均誤差の変化

電流振幅値の大きさを変化させ、各振幅値に対する平 均誤差の変化を検証した。レーザ光は平行ビームにして、 距離 5cm から 80cm まで測定した。電流振幅値は 0.6mApp から 4.2mApp まで変化させた。変調周波数は 1.5kHz で ある。Fig.6 は電流振幅値を 1.8mApp にして測定した結 果である。5回測定を行い、各距離において平均値を計 算し、平均値と理論値を用いて距離に対する平均誤差を 求めた。MHP 周波数理論直線は変調周波数 f_m を 1.5kHz、 三角波電流振幅値 I_m を 1.8mApp、中心波長 λ を 855nm、 変調効率 $d\lambda/dI$ を 0.418nm/mA として、式(10)の理論式 を用いて計算したものである。このことは他の測定にお いても同様に行っている。Fig.6 より、端子間電圧の変化 を利用して検出した MHP 周波数は距離に対して比例的 に変化していることが確認できる。このことから、端子 間電圧の変化を利用した距離測定は可能であるとわかる。 レーザ光を平行ビームにして変調周波数を 1.5kHz、振幅 値を 1.8mApp とした測定の平均誤差は 0.29%となった。

Fig.7 は各振幅値に対する平均誤差の大きさを表した グラフである。このグラフから、1.8mApp で駆動させる と精度のよい測定ができるとわかる。

5・2 平行ビームと集光との比較

Fig.8 は変調周波数を 1.5kHz、振幅値を 1.8mApp として、測定距離ごとにターゲットヘレーザ光を集光した測定の結果である。ターゲットへ光を集光した場合、15cm 未満の距離では集光できなかったので、測定距離は 15cm から 80cm とした。

Fig.6 と Fig.8 の距離に対する誤差と比較すると、Fig8 の誤差は小さく抑えられていることが確認できる。平均 誤差は 0.15%となった。よって、測定距離ごとにターゲットへ光を集光した方が、測定精度は良いと言える。測

Fig.6 Measurement result with collimated beam.

Fig.7 Error as a function with current amplitude.

Fig.8 Measurement result with focused beam.

定距離ごとにターゲットヘレーザ光を集光した場合、平 行ビームと比較すると戻り光量が大きいので、測定精度 が良いと考えられる。

5・3 変調周波数に対する誤差の変化

変調周波数を変化させても共振条件を満たす回数は 変化しないので、距離分解能に影響しない。しかし、設 計した受信回路の周波数特性に適した変調周波数で測定 する必要があるので、変調周波数を変化させて実際に測 定することは精度の良い測定をする上で必要である。

Fig.9 は距離 15cm から 80cm までを測定範囲とした、 変調周波数を変化させた場合の平均誤差の変化を示す。 レーザ光は測定距離ごとにターゲットへ集光し、振幅値 は 1.8mApp としている。Fig.9 より、変調周波数を変化 させた場合も振幅値を変化させた場合と同様に誤差が変 化した。変調周波数が低いと MHP 周波数がハイパスフ ィルタのカットオフ周波数に近くなり、変調周波数が高 くなるとローパスフィルタのカットオフ周波数に近くな るので、MHP 周波数に誤差が表れたものと考えられる。

Fig.9 Error as function of modulated frequency.

5・4 測定最長距離

5・3節までの測定結果から、ULM850を用いた測定 の場合、レーザ光は測定距離ごとにターゲットへ集光し、 電流振幅値を1.8mApp、変調周波数を1.5kHzとすれば最 も精度の良い測定ができることが確認できた。ここでは、 上記の条件で測定できる限界の距離を示す。Fig.10は上 記の条件で測定した結果を示す。測定限界距離は105cm で、平均誤差は0.15%となった。これ以上長い距離では MHP 周波数がローパスフィルタのカットオフ周波数を 超えてしまい、測定できなかった。測定距離1mでも誤 差の大きさが0.1%程度に抑えられているので、このセン サは高精度なセンサとして利用できるとわかる。

6. まとめ

外部反射面の散乱光の一部が戻り光として LD の活性 層内に入ると、共振器内のレーザ光と干渉して光出力が 揺らぐ。この現象を自己結合効果として利用した距離測 定センサの研究を行った。

LDの自己結合効果を応用した研究ではこれまでFP型 LDを使用してきたが、FP型LDでは共振器長が長くモ ードホップが発生しやすいので、VCSELを用いた自己結 合効果の研究を行った。VCSELは半導体基板側に多層膜 反射鏡を使用しているので、VCSELの後方にPDを搭載 してもMHPを検出できない。そこで、自己結合効果に よる光出力の変動に伴ったLDの端子間電圧の僅かな変 化を利用した。この方法であればPDを必要としないの で、より密なセンサの配置が可能となる。

自己結合効果を利用した距離センサは VCSEL に三角 波電流を注入している。三角波電流の振幅値を大きくす ると共振条件を満たす回数が多くなるので、分解能が良 くなる。しかし、注入電流に対する波長変化の線形性が 悪くなるので、誤差は大きくなる。また、振幅値を小さ くすると注入電流に対する波長変化の線形性は良くなる が、分解能が悪くなるので誤差が大きくなる。このこと から、精度の良い測定を行うためには、最適な電流振幅 値で VCSEL を駆動させなければならない。また、設計 した受信回路の周波数特性にあわせて変調周波数を決定 する必要もある。そこで、自己結合型センサの精度向上 を目的として、最適な電流振幅値と変調周波数を求める 研究を行った。

反射シートをターゲットとして、レーザ光を平行ビー ムにし、電流振幅値を大きさに対する平均誤差の変化を 測定したところ、振幅値が 1.8mApp のときに平均誤差が 最も小さくなった。また、測定距離ごとにターゲットへ レーザ光を集光した場合と平行ビームで測定した場合を 比較すると、ターゲットにレーザ光を集光した方が平均 誤差は小さくなった。ターゲットにレーザ光を集光した 方が平行ビームより戻り光量が大きいためであると考え られる。また、変調周波数を変化させて測定を行ったと ころ、最も平均誤差が小さくなった変調周波数は 1.5kHz であった。これらの結果を踏まえて測定限界距離を測定 した結果、測定限界距離は 105cm となり、距離 1m に対 する誤差を約 0.1%に抑えられた。以上のことから、この センサは高精度な測定ができると確認できた。

参考文献

- (1) 坂本明紀・津田紀生・山田諄:「面発光レーザを用いた自己結合型距離計の特性」 電学論 C,Vol.126, No.12, pp.1454-1459 (2006)
- (2) 中尾祐介・津田紀生・山田諄:「半導体レーザの自己 結合効果を用いた自己補正型距離計」 電学論 C, Vol.121, No.12, pp.1819-1825 (2001)

- (3) T. Gharbi, A. Courtevill and A. Chebbour : "Backscattermodulated laser diode for low-frequency small-amplitude vibration measurement", Appl. Opt. 36, pp.8233-8237 (1997)
- (4) G. Giuliani, S. Donati, and L. Monti : "Self-mixing laser diode vibrometer with wide dynamic range", Proc. SPIE Vol. 4827, pp.353-362 (2002)
- (5) 名和靖彦・津田紀生・山田諄:「自己結合効果を用い た微小振動の自動測定」、電学論 C, Vol.129, No.12, pp.2115-2120 (2009)
- (6) P. J. Groot, G. M. Gallatin, and S. H. Macomber : "Ranging and velocimetry signal generation in a backscatter-modulated laser diode", Appl. Opt. 21, No. 21, pp.4475-4480 (1988)
- (7) L. Krehut, J. Hast, E. Alarousu, and R. Myllyla : "Low cost velocity sensor based on the self-mixing effect in a laser diode", Opto-Electronics Rev. 11, No. 4, pp.313-319 (2003)
- (8) J. Hashizume, S. Shinada, F. Koyama, K. Iga : "Reflection Induced Voltage Change of Surface Emitting Laser for Optical Probing", Optical Review, Vol. 9, No. 5, pp.186-188 (2002)
- (9) C. Gorecki, S. Khalfallah, H. Kawakatsu, Y. Arakawa : "New SNOM sensor using optical feedback in a VCSEL-based compound-cavity", Sensors and Actuators, A-87, pp.113-123(2001)

謝辞

本研究は JSPS 科研費 26420397 の助成を受けたものです。

(受理 平成 27 年 3 月 19 日)