LENS 型せん断パネルダンパーの損傷度評価

日本鋳造	(株)	正会員	〇石山	昌幸
日本鋳造	(株)	正会員	原田	孝志
日本鋳造	(株)	正会員	山﨑	信宏

<u>1. はじめに</u>

筆者らが開発を行っている,低降伏点鋼材(LY100)を 用いた LENS 型せん断パネルダンパー(以下,LSD)は, 鋼材の塑性変形により減衰を付加させることから,地震 時に繰返し載荷を受けると劣化損傷を伴う.劣化損傷を 受け続けた LSD は, 亀裂を生じることから,LSD の損傷度 を的確に評価することが必須となる.

そこで、これまで 12-6 試験体により行った静的漸増繰返し試験($\delta y \sim 9 \delta y$, $\delta y = 5 mm$),静的・動的正弦波試験

(周期:slow, 0.5, 1.0, 2.0 秒, 片振幅:5, 10, 15, 20, 30, 40mm), 地震波試験(レベル2地震動,変位制御方式)の結果^{1)~3)}から,LSDの損傷度評価について検討を行った.

2. マイナー則による損傷度評価

前述のように、LSDは、地震などの外力により、図1に 示すような振幅 (x_i) を生じ、同時に劣化損傷を伴う. LSD が受ける劣化損傷度は、振幅 (x_i) の大きさと累積変形性 能 (cumulative displacement capacity, CDC) に依存す る (**表**1参照). そのため、地震波のように、不規則な振 幅 (x_i) の組合せに対するLSDの損傷度評価は、マイナー

則に基づき行う.具体的には、各々の振幅(x_i) に対して、劣化損傷度を求め、それらの和が、 ある一定値以下となることを確認する.

<u>3. LSDの劣化損傷度とDamage pass (Dtp*)</u>

LSDの静的および動的正弦波試験から,振幅(x_i) とCDC(y_i) との関係が求まる(**図** 2 参照).振幅(x_i) とCDC(y_i) との関係は, 試験結果から最小二乗法により整理すると, 式(1) が得られる.この式を簡略化すると, 式(2) が得られる.

 $y = 17497 \ x^{-1.0848} \tag{1}$

$$xy = 15100$$
 (2)

式 (2) より, LSD が亀裂に至るまでの繰返 し回数 (Nf:number of cycles to failure, ライフサイクル) は,式 (3) で与えられる. 一方,劣化損傷度 (Df) は,式 (4) で定義 される.

LSDの損傷度評価は、マイナー則に基づき、 蓄積された劣化損傷度(Df)が、ある一定値 に達した時に生じると考え、式(4)より算 出される劣化損傷度(Df)の総和(D₁)が、

- (株) 東光コンサルタンツ フェロー 高久 達将
- (株) 東光コンサルタンツ 正会員 陳 鋒
 - 愛知工業大学 正会員 青木 徹彦

式(5)に示すように、1以下であれば安全と言える.

$$N_f = 15100/4x^2$$
(3)

$$D_f = 1/N_f \tag{4}$$

$$D_1 = \sum \left(1/N_f \right) < 1 \tag{5}$$

表1は、同振幅を周期1.0秒で与えた動的正弦波試験から、LSDが亀裂に至るまでの繰返し回数(cf)と亀裂までの距離(CDC試験値)を示しており、併せて、式(3)と式(4)より算出した、振幅(x_i)に対するLSDのCDCと 亀裂予測値(Nf)、1サイクルあたりの劣化損傷度(Df)を示している.

例えば,LSD に片振幅 20mm を与える場合,1 サイクル あたりの劣化損傷度 (Df) は0.1060, 亀裂予測値 (Nf) は9.4 と算出される.

一方、LSDの振動振幅量から、LSDの損傷度を評価する
 場合には、それぞれの振幅(x_i)により劣化損傷度が異なるため、振幅(x_i)の大きさに応じて、劣化係数eを乗じる必要がある.

12-6 試験体の場合,表1より,振幅(x_i)の設計基準 値を18.875mmとすると,各振幅(x_i)に対する劣化係数e

図1 LSD に生じる振幅例

図2 片振幅と CDC との関係

	表1	動的	(周期 1.0 秒)	正弦波試験結果と予測値
--	----	----	------------	-------------

-										
	片振幅	(試験結果)								
	(変位)	cf	CDC試験值	変形容量	CDC	Nf	Df			
	x (mm)	d/4x	d (mm)	$x*d(mm^2)$	y=15100/x	$15100/4x^2$	1/Nf			
	5	168	3360	16800	3020	151.0	0.0066			
	10	44	1760	17600	1510	37.8	0.0265			
	20	10	800	16000	755	9.4	0.1060			
	30	4	480	14400	503	4.2	0.2384			
	40	2	320	12800	378	2.4	0.4238			
_	18.875			15100	800	10.6	0.0944			

キーワード: せん断パネルダンパー,低降伏点鋼,制震装置,劣化損傷,マイナー則,機能分離型支承 連絡先:〒210-9567 神奈川県川崎市川崎区白石町 2-1 日本鋳造(株) TEL: 044-355-5033 FAX: 044-333-4575 は、e= x_i /18.875 となり、Dtp*は、式(6) で与えられ る. また、LSDの劣化損傷度については、式(6) で得ら れるDtp*と設計基準値(18.875mm)に対するDtp*の限界値 (CDC=800mm)との比をそれぞれ求め、その総和(D₂)が、 式(7)に示すように、1以下となることを確認する.

 $Dtp^* = \sum (\beta (\lfloor K \otimes p \rfloor) \cdot (\lfloor K \otimes q \rfloor) = \sum (4x^2/18.875)$ $D_2 = \sum (Dtp^*/800) < 1$ (6)
(7)

このように,LSD の損傷度評価は,式(5)ないし式(7) により行うことができる.なお,これら二種類の方法は, いずれも式(2)に基づいているため,同じ解を得る.

<u>4. 漸増繰返し試験の劣化損傷度とDtp*</u>

漸増繰返し試験に対し,劣化曲線から求めたLSDの劣化 損傷度(D₁あるいはD₂)とDtp*を**表2**に示す.

劣化損傷度 $(D_1$ あるいは D_2)は, 7 δ y時に 0.927 となり, Dtp*は 741.7mmとなっている.劣化損傷度 $(D_1$ あるいは D_2) は,おおよそ 1 に近いことから、漸増繰返し試験におけ る亀裂の発生は、7 δ y前後と予測される.なお、先に実 施している、静的漸増繰返し試験では、9 δ y時に亀裂を 生じている.

このことから,LSDの限界振幅は 7 δ y~8 δ yとなり, Dtp*の限界値は 800mmとなる (式(2)より, y=15100/18.875 =800).

5. 地震波試験の劣化損傷度と亀裂予測値

表3に、地震波試験の結果と劣化曲線より求めたLSDの Dtp*と劣化損傷度(D₂)、亀裂予測値(Nf)を示す.

地震波試験において、LSDが亀裂に至った履歴回数(cf) は、caseE1 試験で5回、caseE2 試験およびcaseE3 試験で は6回となっており、いずれのケースにおいても、劣化 損傷度(D_2)から算出する亀裂予測値(Nf)とほぼ一致 する結果となった. <u>6. まとめ</u>

本検討により得た結果を以下に示す.

- 12-6 試験体による静的・動的正弦波試験結果から劣
 化曲線を構築し、マイナー則に基づいて、LSDの損傷
 度評価を行った。
- LSDに亀裂が生じるまでの繰返し回数 (Nf) と劣化損 傷度 (Df) は、振幅 (x_i) の二乗に比例する.
- 劣化曲線から求めた漸増繰返し試験の劣化損傷度(D₁ あるいはD₂)は、7δy時に0.927であり、おおよそ1 に近いことから、LSDの限界振幅は、7δy~8δyとなる.また、Dtp*の限界値は、式(2)から 800mmとなる.
- ・ 地震波試験により、各試験ケースにおいて、LSDが亀
 裂に至る履歴回数(cf)と、劣化損傷度(D₂)から算
 出した亀裂予測値(Nf)は、ほぼ一致した。

参考文献

- 石山,原田,他:低降伏点鋼を用いた LENS 型せん断パネルダン パーの静的性能確認試験,土木学会第64回年次学術講演会,2009.9
- 2) 山崎,原田,他:低降伏点鋼を用いた LENS 型せん断パネルダン パーの動的性能確認試験,土木学会第64回年次学術講演会,2009.9
- 山崎,原田,他:LENS 型せん断パネルダンパーの地震波による 性能確認試験,土木学会第65回年次学術講演会,2010.9
- T. Takaku, F. Chen, T. Harada, M. Ishiyama, N. Yamazaki, T. Aoki, Y. Fukumoto : Static and dynamic behavior of Lens-type shear panel damper for highway bridge bearing, SDSS'Rio 2010, 2010.9
- 5) T. Takaku, F. Chen, Y. Imai, T. Harada, M. Ishiyama, N. Yamazaki, T. Aoki. Y. Fukumoto: Design and experimental performance evaluation of lens-type shear panel dampers for highway bridge bearings. PSSC2010,Octorber 20~22,Beijing

載荷	片振幅	累積変位	予測回数	劣化	D_1	劣化係数	劣化振幅	\mathtt{Dpt}^*	D_2
case	(変位)	Σ (4x)	(Nf)	損傷度	$\Sigma (1/Mf)$	е	e*x	Σ (4e*x)	$\Sigma \; (\mathrm{Dpt}^*/800)$
(δу)	x (mm)	(mm)	$15100/4x^2$	$1/\mathrm{Nf}$		x/18.875	(mm)	(mm)	
1	5	20	151.0	0.0066	0.0066	0.2649	1.32	5.3	0.0066
2	10	60	37.8	0.0265	0.0331	0.5298	5.30	26.5	0.0331
3	15	120	16.8	0.0596	0.0927	0.7947	11.92	74.2	0.0927
4	20	200	9.4	0.1060	0.1987	1.0596	21.19	158.9	0.1987
5	25	300	6.0	0.1656	0.3642	1.3245	33.11	291.4	0.3642
6	30	420	4.2	0.2384	0.6026	1.5894	47.68	482.1	0.6026
7	35	560	3.1	0.3245	0.9272	1.8543	64.90	741.7	0.9272
8	40	720	2.4	0.4238	1.3510	2.1192	84.77	1080.8	1.3510
9	45	900	1.9	0.5364	1.8874	2.3841	107.28	1509.9	1.8874
限界変位	35				D1<1			800.0	D ₂ <1

表2劣化曲線から算出したLSDの劣化損傷度(漸増波試験)

表3 地震波の試験結果と予測値

	(地震波試験結果)					(予測値)							
case	履歴回数	最大	最大ひずみと変位		最小ひずみと変位			Dtp	Dpt*	D_2	予測回数		
	(cf)	(mm)	(%)	(δ/δу)	(mm)	(%)	(δ/δy)	(mm)	(mm)	Σ (Dpt [*] /800)	(Nf)		
E1	5	33.6	21.5	6.7	-26.2	-16.8	-5.2	325	183	0.2288	4.4		
E2	6	22.9	14.7	4.6	-29.3	-18.8	-5.9	322	160	0.2000	5.0		
E3	6	14.8	9.5	3.0	-32.8	-21.0	-6.6	235	124	0.1549	6.5		