Huels 型アークヒータの改良と作動特性

Improvement and characteristic of Huels Arc Heated Wind Tunnel.

北川 一敬,保原 充

Kazutaka KITAGAWA, Michiru YASUHARA

Abstract: Investigation of characteristic performance of a high enthalpy flow is important for designing the reentry problem of hypersonic flight vehicle and disposal of waste. A high enthalpy wind tunnel, with Huels type DC-arc heater, is improved to 54kVA(49kW) input power source and its characteristics are investigated. In the case of arc heated flow, the mass flow rate m, the stagnation pressure p₀, the discharge current I and the voltage V are measured by experimentally by comparing these results of 27kVA(24.5kW) input power in this arc heater. The stagnation temperature T₀ was not measured, however a method of estimating it from m and p₀ with the aid of the high temperature air tables, is proposed by assuming isentropic flow. In the present experiments, the average value of stagnation temperature are evaluated about 2000K $\sim 2500K$. K.Kindler's graph, for the electric resistance V/I versus the similarity parameter I²/m are plotted from the present data for air, in addition another data of Huels, Hybrid and segmented type arc heaters are compared to the present data.

1. はじめに

高温プラズマ風洞は,航空宇宙分野において大 気圏再突入時における高温,高圧という過酷な条 件に耐えうる耐熱材料の開発・試験や産業廃棄物 の無害化処理の利用目的ため,より高いエンタル ピを発生させる性能が求められている^{(1)~(9)}.

本研究では本大学の 24.5kW の水冷式 Huels 型 アークヒータの入力電力を 2 倍の 49.0kW に変更 し,各種作動ガス(空気及び窒素)を用いて,澱み点 の圧力変化に伴う放電電流,電圧,流量などのア ークヒータの高出力化の基礎特性について調べた. 最後にその結果について本大学の Hybrid 型アー クヒータや他の研究機関の実験データ^{(1)~(3)}と比 較検討を行った.

2. 実験装置

実験装置は Huels 型アークヒータ部,超音速/ ズル,電源装置系,作動ガス供給系,排気装置系, 冷却装置系,測定装置系,分光測定部から成って いる.

2.1 ヒュルス型アークヒータ部

本大学の Huels 型アークヒータを図 1-a~c に 示す.アークヒータは水冷式,上流側電極を陰極, 下流側電極を陽極とし,両電極には冷却効率を考 慮して熱伝導率の高い銅を用いた.

2.2 超音速ノズル

ノズルはコニカルノズルでアークヒータ下流部 に取り付けた.ノズルのスロート径は 3.5 mm と し作動ガスに空気を用いた時,出口部でのマッハ 数 M=3 を得る設計とした.

2.3 電源装置系

電源装置には直流式大阪電機製エアープラズマ 切断機を改良し用いた.今回,入力電力 24.5kW の電源装置を 2 台並列接続し 49.0kW に上昇し, 放電電流を 240A まで変化させることが可能であ る.また,アークヒータ上流部の陰極ケースに電 磁コイルを巻いて外部磁場を発生させ,ローレン ツカによりアーク輝点を中空電極内で回転させる ことにより電極の局部的な損傷を防いでいる.

2.4 作動ガス供給系

作動ガスは高圧ボンベよりレギュレタで流量を 調節しながら2方向ガスライナを通して空気流量 50//minまで供給できる.今回の実験では作動ガス に空気と窒素を使用した.

2.5 排気装置系

アークヒータ下流部に真空タンクを取り付け, そのタンクに並列に 2 基の油圧回転式ポンプを接 続しタンク内を真空にし,ノズルより排出される ガスは配管内を通り屋外に放出される.

2.6 分光計測部

分光計測部は,超音速ノズル上流の澱み点付近 に設置された光ファイバ,集光レンズ,分光器, フォトマル,NF社製ロックインアンプLI5640, 横河電機株式会社製デジタルスコープDL716に より成り立っている。分光器は,日本分光株式会 社製回折格子型分光器 CT-25ND(回折格子3600 grooves/mm,ダブルモノクロメータ),焦点距離250 mm である.各分子・イオンスペクトルは浜松ホ トニクス株式会社製光電子増倍管 R7057(フォト マル)により光電測光で行った.

図 1-a Huels 型アークヒータ(断面図)

図 1⁻b Huels 型アークヒータ(立体図)

3. 作動特性実験方法

実験は低圧部タンク内圧力を約 13.3Pa(0.1torr), 澱み点圧力を 0.05~0.25MPa の間で調整する,高

周波放電を開始させ、放電がアーク放電に移行 し定常状態になった後、実験条件に合わせて電流 を 80~240A の間で変化させ、作動ガス供給流量 をレギュレタにより変化させて一定の放電電流下 で任意に澱み点圧力から、放電電圧、流入流量、 真空タンク内圧力を測定した.

図 1-c Huels 型アークヒータ(写真)

4. 作動特性実験結果及び考察

作動特性実験の作動ガス空気による測定結果は NBS(米国連邦基準局)の Hilsenrath etc.の平衡高 温空気表⁽⁴⁾を元に無放電時の温度及び放電時と無 放電時の作動ガスの質量流量比を使用した.作動 ガス窒素による測定結果は,放電時と無放電時の 作動ガス質量流量の比を利用して澱み点における 温度推算を行った.

図2はHuels型アークヒータの作動特性実験の 実験結果である,作動ガス空気による澱み点圧力 と平均澱み点推算温度との関係を示す.入力電力 24.5kW(1台接続)と49.0kW(2台並列接続)におけ る違いを調べるために一定放電電流 100A~120A 下での作動特性について実験を行った.図2より 入力電力の違いによる作動特性の変化はほぼ見ら れない.図3は,作動ガス窒素による澱み点圧力 と平均澱み点推算温度との関係を示す.図3より 図2の時と同様に入力電力の違いによる作動特性 の変化は殆ど無いと考えられる.並列2台接続に よる電源の損失やリップルの影響は殆どないこと が解った.

図4は放電電流80A~240Aの作動ガス空気の作 動特性実験を行い、その澱み点圧力と推算温度と の関係を示す.電源入力電力を2倍に増加させた ために、最大放電電流値が120Aから240Aに増加 したため、この範囲において実験を行うことがで きた.図4より澱み点推算温度は全体的に 0.15MPa付近まで増加し、最大値を取り、その後 約200K程度減少する.最大澱み点推算温度は放 電電流120Aの時に、約2400Kを示している.さ らに、放電電流値が120Aを超えると澱み点推算 温度が下がり始める.これは、質量流量の増加に よりアーク放電から得られるエンタルピが減少す るためであると考えられる.

図5はK.Kindler^[5]による電気的特性による相似 性の結果を示す.相似関係はアークヒータの測定 結果の放電電圧 V,放電電流 I,作動ガスの質量流 量 m とした時, 放電抵抗 V/I を I²/m に対して対数 プロットするとその装置の規模によらずほぼ一定 の線上に乗ることが知られている.結果には既知 の各研究機関のアークヒータのデータとともに示 す. 図5よりHuels型アークヒータ 電力 49.0kW における値は 24.5kW の時のほぼ延長線を示し、 その抵抗値は減少していき、さらに他のアークヒ ータと相似性があると推測することができる. Hybrid 型アークヒータの澱み点推算温度は約 3000K を得られ、放電抵抗値は高い値を示してい る. K.Kindler のグラフの関係を V/I=C(I²/m)^{-α} と仮定すると, Huels型アークヒータではα=0.69 ~0.74, Hybrid 型アークヒータではa=0.54~0.61, Segmented - Constrictor 型アークヒータではa =0.42~0.59 となった.

5. 分光計測及び方法

5.1 分光計測

分光実験は超音速ノズル上流の澱み点付近の振動温度を測定し、各種作動ガスによる澱み点温度 推算方法について検証する目的で行った.分光計 測は、澱み点にてプラズマ流の発光を光ファイバ ー集光レンズにより分光器に導き分光を行う.特 に、 N_2 +の1 st Negative Band System に注目して、 N_2 +の振動温度 T_v を求めた.測定条件は、分光器 の送り速度 0.834nm/min、時間軸 10s/div,記録長 200kword、測定時間 100s、フォトマル印加電圧 -1000V である.

図 2 作動ガス空気による澱み点圧力と平均澱み点 推算温度との関係

5.2 振動温度 T,

本研究において,振動温度 7.は局所熱平衡を 仮定し,各エネルギ準位への分布が Boltzmann 分 布に従うとして,Boltzmann プロット法から求め

図3 作動ガス窒素による澱み点圧力と平均澱み点 推算温度

図 4 放電電流 80A~240A の作動ガス空気による 澱み点圧力と平均澱み点推算温度との関係

る. 特に N₂+の 1 st Negative Band System に注目 して, N₂+の振動温度 T_{ν} を求めた. 1 st Negative Band System は, 電子が B 軌道から X 軌道に遷移 すると同時に振動エネルギ状態において遷移が起 こる際, 放射されるスペクトルのグループにつけ られた名称であり, ほぼ可視領域に存在する. よ り高いエネルギ準位 B に存在する分子の振動量子 数を ν , より低いエネルギ準位 B に存在する分子 の振動量子数を ν "とする. 二原子分子の振動に関 しては縮退がないのを考慮すれば, スペクトル強 度 $S_{\nu'\nu'}$ は, $S_{\nu\nu'} = KN_{\nu}h\nu_{\nu\nu'}A_{\nu\nu'}$ (1) この時,分配関数 $Q_A(T)$ と,粒子密度 N_A は,振動 量子数に無関係で,比例定数 Kに含めた.

$$A_{\nu'\nu''} = \frac{64\pi \ \gamma_{\nu''}}{3hc^3} P(\nu',\nu'')$$
(2)

但し, *P*(*v*',*v*")は, *v* の状態から*v* の状態への相対 遷移確率である.よって,スペクトル強度 *S*_{*v*'v"}は, 式(1), (2)より

$$S_{v'v''} = K N_{v'} v_{v'v''}^{4} P(v', v'')$$
(3)

より高いエネルギ状態 B にある分子の振動のモー ドについて Boltzmann 分布と仮定すると,

$$N(\nu') \propto \exp\left(-\frac{G(\nu')hc}{kT_{\nu}}\right)$$
(4)

G(*v*)は,振動エネルギの比である.第一近似的として,振動を調和振動と仮定すると,

$$G(v') = \frac{\varepsilon(v')}{hc} \cong \omega_e\left(v' + \frac{1}{2}\right) \tag{5}$$

ここで, ω_eは分子の振動を調和振動と仮定した時の1cm 当たりの振動数で, ω_e=2419.84cm⁻¹, *c*は 光速である. 式(4), (5)を式(3)に代入し, その対数 をとれば

$$\log_{10} \frac{S_{\nu\nu^{*}} \lambda_{\nu\nu^{*}}}{P(\nu',\nu'')} = -\frac{hc\omega_{e}\left(\nu' + \frac{1}{2}\right)}{kT} \log_{10}(e) + const \qquad (6)$$

hck=1.4388cm°K, log₁₀(*e*)=0.4343 を代入する と式(6)は、

$$\log_{10} \frac{S_{\nu\nu''} \lambda_{\nu'\nu''}}{P(\nu',\nu'')} = -\frac{1272}{T} \omega_e \left(\nu' + \frac{1}{2}\right) + const$$
(7)

第一近似として,以上の方法で良い.実際には窒素の振動は調和振動ではなく,非調和振動である. この時の *G*(*v*)は,

$$G(v') = \omega_e \left(v' + \frac{1}{2}\right) - \omega_e x_e \left(v' + \frac{1}{2}\right)^2 + \omega_e y_e \left(v' + \frac{1}{2}\right)^3 \cdots (8)$$

窒素では、 $\omega_e = 2419.84 \text{cm}^{-1}$, $\omega_e \chi_e = 23.19 \text{cm}^{-1}$, $\omega_e \gamma_e = 0.5375 \text{cm}^{-1} (10),(11)$ である. G(v)は、相対遷 移確率 P(v',v'')と共に、表1に示す. このG(v)を 用いる場合は、式(4)、(8)のG(v)を式(3)に代入し て、hck, $\log_{10}(e)$ の値を代入して対数をとれば良 い、よって、

$$\log_{10} \frac{S_{\nu'\nu'} \lambda_{\nu'\nu'}}{P(\nu',\nu'')} = -\frac{0.6249}{T_{\nu}} G(\nu') + const$$
(9)

振動温度を測定するときには、電子及び回転準位

の等しい複数のスペクトルを測定し,式(7)又は, 式(8)に相対強度法を適用し,これをグラフの縦軸 に,また*G*(*v*)をグラフの横軸にとりプロットし, プロットを直線近似して得られる傾きが-1/*T*,とな り,振動温度*T*,が求まる.

6. 分光測定結果及び考察

実験では、N₂アークプラズマ流における N₂+の 1 st Negative Band System の(0[•]0)Band(波長 391.44nm) と (1⁻1)Band(波長 388.43nm) と (2[•]2)Band(波長 385.79nm)の測定を行った.測定 条件は、分光器の送り速度 0.834nm/min、時間軸 10s/div,記録長 200kword、測定時間 100s、フォ トマル印加電圧・1000V である.実験条件は、プラ ズマ放電状態で電流 100A,電圧 130V、澱み点圧 力 0.00MPa,流入流量 331/min の状態でタンク内 圧力は 1.5torr であった.

図 6 は N₂+1-の(0·0)Band(波長 391.44nm)の分光 測定結果,図7はN₂+1-の(1-1)Band(波長 388.43nm)の分光測定結果,図8は N₂+1-の (2·2)Band(波長 385.79nm)の分光測定結果を示 す. 分光測定結果から, (0-0)Band と(1-1)Band と (2-2)Band の相対スペクトル強度 S を取ると比は 1:0.611:0.481 となった. この比から式(A-9)を用い てスペクトル強度 S, ν, 波長λ, ν, 相対遷移確率 P(v',v")からエネルギ比G(v)からグラフの傾きを 求めた. ここで光電子増倍管相対感度 PS は定数で ある. 図7はエネルギ比G(v)と式の左辺の直線の 傾きを示す. 図7より, (0·0)Band と(1·1)Band と (2-2)Bandの3点による振動温度はT_v=4157Kとな った. (0·0)Band と(1·1)Band の2点では T_v=3002K, (1·1)Band と(2·2)Band の 2 点では T_v=8638K とな った. アークプラズマ流は超音速ノズル上流の澱 み点付近において非平衡性の可能性が示された.

「作り加之下国

図 6 N₂+1-の分光測定結果

図7 エネルギ比G(v)と式の左辺の直線の傾き

7. まとめ

本研究では、Huels 型アークヒータの入力電力を 従来の2倍49.0kWに変更したことにより、入力 電力24.5kW(1台接続)と49.0kW(2台並列接続)に おける違いを調べるため、各種作動ガス(空気、窒 素)における作動特性実験と入力電力の増加に伴い 増加した最大放電電流値240Aまでの作動特性実 験を行い、以下の結果が得られた。

澱み点推算温度は放電電流 120A,約2400K に なる.さらに,放電電流値が 120A を超えると澱 み点推算温度は減少し,質量流量の増加によりア ーク放電から得られるエンタルピが減少するため である.

K.Kindler によるアークヒー夕間の相似関係は, 入力電力が 2 倍の増加に対しても,従来のアーク ヒータと相似性があることが解かった.相似性グ ラフにおいて Hybrid 型アークヒータの抵抗値は Segmented – Constrictor 型アークヒータをほぼ 同じの高い値を示し,その澱み点推算温度は約 3000K を示す.K.Kindler のグラフの関係を V/I=C(I²/m)^{-α}と仮定すると,Huels型アークヒー タでは α =0.69~0.74, Hybrid 型アークヒータで は α =0.54~0.61, Segmented – Constrictor 型アー クヒータでは α =0.42~0.59 となった.

分光測定により、N₂アークプラズマ流における N₂⁺1 st Negative Band System の(0-0)Band(波長 391.44nm) と (1-1)Band(波長 388.43nm) と (2-2)Band(波長 385.79nm)のスペクトルから,局 所平衡を仮定して振動温度を求め、3 点による振動 温度は T_{*} =4157K, (0-0)Band と(1-1)Band の 2 点 から T_{*} =3002K, (1-1)Band と(2-2)Band の 2 点か ら T_{*} =8638K となった.アークプラズマ流が澱み 点付近において非平衡性の可能性が示された.実 験より求めた作動ガス窒素の澱み点推算温度は約 2200K となった. 今後の風洞設計,性能向上に大きく資すると考 えられる.

参考文献

- 渡辺泰夫,松崎貴至,板垣春昭,長谷川清一: 750kW アーク加熱風洞の基本特性,第26回 流体力学講演会講演集,日本航空宇宙学会ほか, 1994, pp.113-116
- 2) 稲谷芳文,長谷川清一,小松智視:世界のアー ク加熱器を用いた設備の現状と今後,第26回 流体力学講演会講演集,1994, pp.101-104
- M. Hinada, Y. Inatani, T. Yamada, K. Hiraki : An Arc – Heated High Enthalpy Test Facility for Thermal Protection Studies, The Institute of Speace and Astronautical Sience, 1996, Report No.664, p.6.
- J. Hilsenrath, M. KLEIN, H. W. Woolley : Tables of Thermodynamic Properties of Air Including Dissociation and Ionization, National Bureau of Standards, pp38-64
- 5) 田頭成能,織田 剛,満田正彦,鷲田孝史,進 俊彦,吾郷健二, Stahl, T.J.:風洞用アークヒ ータの諸特性,第26回流体力学講演会講演集, 日本航空宇宙学会ほか,1994,pp.109-112
- M. Yasuhara, K. Kitagawa, M. Suzuki, H. Yamada: Similarity Study of Operating Characteristics of Arc Heated Wind Tunnel, Proc. Int. Conference on Fluid Engineering, Tokyo, Japan, 1997, Vol.III, pp.1479-1483
- D. D. Baals, W. R. Corliss: Wind Tunnels of NASA, NASA Washington, D.C., 1981, pp.95 -96.
- 8) 保原 充,水谷 充:アーク加熱風洞の方法に ついて、日本航空宇宙学会誌、1995、Vol.43、 No.499、pp.441-445
- 9) L. Spitzer: Physics of Fully Ionized Gases, Interscience Publishers, N.Y., 1956.
- G. Herzberg: Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules, 2nd Ed, D.Van Nostrand Co., Princeton, NJ, 1950.
- G. Herzberg: Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, D.Van Nostrand Co., Princeton, NJ, 1979.

(受理 平成14年4月10日)