ポリエチレンテレフタレート基板上に作製されたバナジルフタロシアニン薄膜 の非線形光学特性

Nonlinear Optical Properties and Morphology of VOPc Thin Film Prepared on Polyethylene-terephthalate Substrate

相馬崇宏++,古橘秀夫+++,吉川俊夫++++,前田昭徳+, 内田悦行+++,小嶋憲三+,大橋朝夫+,落合鎮康+ Takahiro SOUMA++, Hideo FURUHASHI+++, Toshio YOSHIKAWA++++ Akinori MAEDA+, Yoshiyuki UCHIDA+++, Kenzo KOJIMA+ Asao OHASHI+, Shizuyasu Ochiai+

Abstract Vanadyl-phthalocyanine (VOPc) thin films were prepared on Polyethylene-terephthalate (PET) substrate by a molecular beam epitaxy (MBE). Dependence of morphologies and nonlinear optical properties of the VOPc films on preparing conditions was investigated using UV/VIS spectroscopy and third harmonic generation measurements. VOPc films prepared on the substrate of different temperatures (60°C~120°C) showed two structures of a phase I and phase II. We suggested that the threshold temperature for structure changing from phase I to phase II existed at the vicinity of 80 °C and also indicated that the TH intensity of VOPc thin film having phase II was more larger than that having phase I.

1. はじめに

非線形光学材料は、レーザ光の強電界下で2次 以上の非線形光学応答を示す材料であり、周波数 変換、発振、スイッチング等、数多くの機能を有 する。応用面では、光デバイスの基幹材料として 期待され、注目を集めている。有機系非線形光学 材料としては有機結晶、結晶性高分子、液晶、高 分子結晶などが知られており、有機材料は無機材 料に比べ、その多様性から非線形光学材料として 有望であるが無機材料に比べると結晶の成長、高 品質(平滑性、均一性、配向性)薄膜の作製法が 十分に確立されていない¹¹。これらは分子設計に よる有機材料の多様性に基づく優れた非線形光学 材料を作製するために解決されなければならない

+	愛知工業大学	電気工学科	(豊田市)	
++	愛知工業大学大	学院 電気電子	了工学専攻	(豊田市)
+++	愛知工業大学	情報通信工学	科(豊田市	ī)
++++	愛知工業大学	総合技術研究	所(豊田市	ī)

重要課題である。

本研究においては、バナジルフタロシアニン (VOPc)薄膜が光スイッチ、増幅、記憶などの 光素子として応用の可能性を有することから、分 子線エピタキシー(MBE)法によりPET基板上に VOPc薄膜を作製する。PET基板を用いた理由につ いては、ガラスに比し柔軟性に優れていること、 融点が250℃と耐熱性に優れていること、C軸配向 したPETであれば、繊維周期と分子間距離を考慮 すると、VOPc分子の長径に近いことなどを上げ ることができる。PET基板上に作製されたVOPc薄 膜を非線形光学材料や光デバイスなどに応用すべ く、薄膜の形態、非線形光学特性について、紫外 ・可視吸収(UV/VIS)スペクトル、メーカーフ リンジ法を用いて測定された第3次高調波により 検討した。

2. 実験方法

試料の作製については、分子線エピタキシー (MBE)法を用い、真空度10⁻⁷Pa台で製膜を行な った。蒸着材料として、バナジルフタロシアニン (VOPc)を用いた。分子構造はFig. 1のような分 子の長径1.4nm、高さ0.2nmの傘型の構造を有する。 基板材料にはPET filmを用いた。

Fig. 1 Molecular structure of VOPc molecule

薄膜作製条件をTable 1に示す。各記号はT_P:予備 加熱温度、 t_p :基板予備加熱時間、T_e:蒸着温度、 T_s:基板温度、t:蒸着時間、d:膜厚とする。た だし、T_Pは150℃、 t_p :60分、T_e:300℃とした。

Table	1	Preparing	conditions	of	VOPc	thin	films

Sampl	Ts (°C)	t(min)	d (nm)
S-1	60	30	30
S-2	80	30	30
S-3	100	30	<u>30</u>
S-4	120	30	30
S-5	80	120	100
S-6	120	120	100

PET基板上に作製されたVOPc薄膜を紫外・可視吸 収(UV/VIS)スペクトル、メーカーフリンジに より測定されたTH強度のレーザ光入射の角度依 存性から、VOPc薄膜の形態評価と非線形光学特 性を検討した。TH強度の測定については、回転 式メーカーフリンジ法を用いた。レーザ源として Nd:YAGレーザ(出力:455mJ、波長:1064nm、 パルス幅:5ns、繰り返し周波数:10Hz)、第3次 高調波の検出に光電子増倍管を用いた。

3. 結果および検討

Fig. 2にPET単独のTH強度のレーザ光入射角特 性を示す。PET単独ではTH強度が観測されるが最 大0.01a.u.程度である。

Fig. 2 TH intensity vs incident angle of PET

Fig. 3はS-1、S-2のUV/VISスペクトルを示す。

Fig. 3 UV/VIS spectra of S-1 and S-2

Qバンド帯領域において基板温度60℃で作製され たS-1では680nm,750nm付近に吸収ピークが観測 される。これはガラス基板上に作製されたVOPc 薄膜が680nm,740nmの吸収ピークを持つ相 I の 状態であることから相 I が支配的であることを示 す²¹。基板温度80℃で作製されたS-2のUV/VISス ペクトルにおいて、820nm付近にショルダーが見 られることから、相 II への転移が進んでいると考 えることができる。Fig.4はS-1、S-2のP偏光レー ザ光入射により,TH強度を測定した結果を示す。 S-2では、相 I が支配的であるS-1に比しTH強度が 増大している。これはS-1に比しS-2において相 II が支配的であるためである。

Fig. 5はS-3、S-4のUV/VISスペクトルを示す。Q バンド帯領域において670nm, 760nm, 830nm付近 に吸収ピークを示し, 670nm, 760nmに比べて 830nmに吸収ピークが大きく出現していることを

Fig. 4 TH intensities vs incident angle of S-1 and S-2

Fig. 5 UV/VIS spectra of S-3 and S-4

これは基板温度100℃, 120℃では相Ⅰから相Ⅱへ の転移が起こっており、相Ⅱの状態が支配的であ ることを示す。このことからVOPc/PETは基板温 度60℃から120℃にかけて相Ⅰから相Ⅱへの相構 造変化が起こる温度領域であり、基板温度80℃付 近に相構造変化のしきい値が存在すると考えられ る。この温度はPETのガラス転移温度(85℃)に 近く、PETのガラス転移が相転移と密接な関係に あることを示唆する。Fig. 6はS-3、S-4のP偏光の レーザ光入射により、TH強度を測定した結果を 示す。VOPc薄膜が相Ⅰから相Ⅱへ転移すること でTH強度が相Iに比し約4倍程大きくなる。基 板温度120℃で作製された薄膜のTH強度から、3 次非線形光学感受率 χ⁽³⁾ が3.2×10⁻ "esu程度にな ることが見積もられた。この値は現在までに得ら れた値に比し最大の値である。χ(3)の計算式を

Fig. 6 TH intensities vs incident angle of S-3 and S-4

次に示す"。

$$|\chi^{(3)}| = 12 \frac{1_{c}}{\lambda_{\omega}} |\chi_{r}^{(3)}| \left(\frac{I_{m}(3\omega)}{I_{r}(3\omega)}\right)^{\frac{1}{2}} AB$$

χ_r⁽³⁾:溶融石英の非線形光学定数、I_m(3ω):試料のTH強度、I_r(3ω):溶融石英のTH強度、I_e(3ω)
:溶融石英のコヒーレンス長、λω:基本波の波長を示す。A、Bの計算式を次に示す。

$$\mathbf{A} = \left| \frac{\widetilde{\mathbf{n}}_{3\omega} + 1}{\mathbf{n}_{3\omega}^{r} + 1} \right| \left(\frac{\mathbf{n}_{\omega} + 1}{\mathbf{n}_{\omega}^{r} + 1} \right)^{3}$$

$$B = \left(\frac{(n_{\omega} - n_{3\omega})^2 + (k_{3\omega}^2)}{\left(1 - \exp\left(-\frac{1\alpha}{2}\right)\right)^2 + (\Delta \Psi)^2 \exp\left(-\frac{1\alpha}{2}\right)}\right)^{\frac{1}{2}}$$

ここで、 α : THG周波数における試料の吸収係 数、 n_{ω} 、 $\hat{n}_{3\omega}$: 基本波と高調波の試料の屈折率、 $n_{\omega r}$ 、 $n_{3\omega r}$: 基本波と高調波の溶融石英の屈折率、 $n_{3\omega}$ と $k_{3\omega}$: $\hat{n}_{3\omega}$ の実数部と虚数部、 $\Delta \Psi$: 第3次 高調波の位相不整合量を示す。ただし、 $\Delta \Psi = 6 \pi (n_{\omega} - \hat{n}_{3\omega}) 1/\lambda_{\omega}$ である。

膜厚を厚くしたときの非線形光学特性について、 以下に検討する。理論的根拠を示すため、第3次 高調波の強度Ⅰ。を次式に示す。

$$I_{3} = \frac{4 \omega^{2} I_{1}^{3}}{(n c)^{4} \varepsilon_{0}^{2}} \{\chi^{(3)}\}^{2} d^{2}T_{1}^{3}T_{3} \frac{\sin^{2} (\Delta kd) / 2}{(\Delta kd/2)^{2}}$$

ここで、ω:角周波数(ω=C/λ_P、Cは光強度、 λ_Pは入射波の波長)、I₁:試料への基本波の強 度、n:試料の屈折率、 $\chi^{(3)}$:3次非線形光学感 受率、T₁、T₃:入射波、高調波の透過率、d:試 料の厚さ、 ΔK :位相不整合量を示す。ただし、 $\Delta K = \pi/1$ 。=6 π (n₃-n₁)/ λ_P で ある。したがって、位相整合条件が成立すれば、 I₃ \propto d₂で示すことができる。Fig. 7はS-2、S-5の UV/VISスペクトルを示す。

Fig. 7 UV/VIS spectra of S-2 and S-5

Qバンド帯領域において吸収ピークが蒸着時間30 分、120分共に760nm付近にピークを持ち、相Ⅱへ の転移状態にある相Ⅰが支配的なVOPc薄膜であ ると考えられる。Fig. 8のS-2、S-5のTH強度にお いても、膜厚の2乗に比例したTH強度の増大が見 られない。

Fig. 8 TH intensities vs incident angle of S-2 and S-5

これはS-5が相Ⅱへの転移状態にある相Ⅰの支配

的な薄膜であることを支持する。Fig. 9のS-4、 S-6のUV/VISスペクトルにおいては、蒸着時間30 分の試料が相IIの状態にあるのに対し,蒸着時間 120分の試料においては680nm、750nmに吸収ピー クが転移し相Iが支配的であると考えられる。こ れは膜厚を厚くすると、PET基板とVOPc分子との 相互作用が小さくなり、相Iの状態で堆積するこ とを示唆する。

Fig. 9 UV/VIS spectra of S-4 and S-6

Fig. 10のS-4、S-6のTH強度においては、S-6の膜が相Iの支配的な膜であることから、膜厚を考慮に入れると、S-4とS-6が同程度のTH強度を示すことは妥当であると考えられる。さらにS-6をFig. 8のS-5と比較すると、S-5に比しS-6のTH強度は低下し、上述の考えを支持している。

Fig. 10 TH intensities vs incident angle of S-4 and S-6

以上よりUV/VISスペクトルから、吸収ピークが

750nm付近で相 I から相 II への転移の過渡状態に 入るものと考えられ、第3次高調波は膜の相状態 に依存する。

4. まとめ

(1) UV/VISスペクトル、TH強度から蒸着時間 30分で作製された薄膜は基板温度60℃から120℃ にかけて相Iから相Iへの構造変化が起こる温度 領域であり、基板温度80℃付近に構造変化のしき い値が存在することを示唆した。

(2) VOPc薄膜が相Ⅰから相Ⅱへ相転移することによりTH強度が大きくなることを示した。 (3) 基板温度120℃、蒸着時間120分の条件で作製された薄膜については、膜厚が厚いため、基板との相互作用が小さくなり、相Ⅰが支配的な膜になりことを示した。また吸収ピークが750nm付近から相変化の過渡状態に入ることを示した。

参考文献

1)Y. Tanabe, A. Kaito, K. Yase, K. Ueno,

H. Okumoto, N. Minami, H. Nozoe, H. Kondoo, M. Yumura and H. Yanagishita: National Institute of Materials and Chemical Research, Vol.2, no.2, pp. 235-317, (1994).

2)M.Hosoda, T.Wada, A.Yamada, A.F.Garitoand and H.Sasabe: Jpn.J.appl.phy., 30, L1486, (1991).

3)S. Fang, H. Tada and S. Mashiko: Appl. Phys. Lett., Vol.69, No.6 pp. 767-769, (1996).

(受理 平成12年3月18日)